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An expression for the single-particle thermal diffusion coefficient of a charged colloidal sphere is derived on the
basis of force balance on the Brownian time scale in combination with thermodynamics. It is shown that the single-
particle thermal diffusion coefficient is related to the temperature dependence of the reversible work necessary to build
the colloidal particle, including the core, the solvation layer, and the electrical double layer. From this general expression,
an explicit expression for the contribution of the electrical double layer to the single-particle thermal diffusion coefficient
is derived in terms of the surface charge density of the colloidal sphere, the electrostatic screening length, and its core
radius, to within the Debye-Hu¨ckel approximation. This result is shown to explain experimental data, for both thin
and thick double layers. In addition, a comparison with other theories is made.

1. Introduction

Spherical colloids are excellent model systems to gain
understanding concerning the microscopic mechanism that
underlies collective diffusion and thermal diffusion. The coupling
of a temperature gradient to diffusion in a multicomponent mixture
was observed for the first time 150 years ago in salt solutions
by Lugwig.1 Up to a decade ago, thermal diffusion of simple
molecular systems has been extensively studied. Due to the recent
development of new experimental techniques to probe thermal
diffusion, macromolecular systems have become of increasing
interest.Inrecentyears,severalexperimental2-6,16andtheoretical7-10

studies are devoted to the determination of the thermal diffusion
coefficientDT of macromolecules, micelles, and colloids. Here,
one should differentiate between highly diluted and concentrated
solutions. For very dilute systems, the thermal diffusive behavior
is dominated by single-particle properties, related to the core
material, the electric double layer, and the solvation layer. For
concentrated systems, in addition to single-particle properties,
interactions between the macromolecules need to be considered.
In the present paper, the contribution of the electric double layer
to the single-particle thermal diffusion coefficient will be
considered.

In two earlier papers of one of the present authors,9,10 the
contribution to the thermal diffusion coefficient of colloids that
arises from colloid-colloid interactions was discussed. In the
present paper, we consider very dilute suspensions where these
interactions do not contribute. There is one section in ref 9,
however, where the single-particle thermal diffusion coefficient
is claimed to vary proportionally to the temperature derivative
of the chemical potential of the “complexed colloidal particle”,

which includes the solvation layer and electrical the double layer.
As shown in the present paper, however, this is not correct. It
will be shown that, instead of the derivative of the chemical
potential, the temperature derivative of the reversible work to
create such a complexed colloidal particle determines the single-
particle diffusion coefficient.

When gradients in concentration and temperature and devia-
tions from their mean values are small, the phenomenological
equation of motion for the number densityF of a given species
that incorporates temperature-induced diffusion is of the form

whereD is the collective diffusion coefficient andDT is the
thermal diffusion coefficient. The thermal diffusion coefficient
describes the coupling of a spatially varying temperatureT(r , t)
and the density of a given species. Equation 1 will be derived
in the present paper from thermodynamic arguments and force
balance on the Brownian time scale, leading to explicit expressions
for the thermal diffusion coefficientDT. These expressions are
explicitly evaluated as far as the electrical double layer
contributions are concerned in terms of charge, core radius, and
Debye screening length. The theoretical prediction will be
compared to experiments on a micellar system11 and a colloidal
system of polystyrene particles of varying sizes.12 Moreover,
our analysis will be compared to other recent theories on charged
colloids.7,8,13

2. Basic Idea for the Calculation ofDT for Colloids

The starting point for the explicit calculation of the thermal
diffusion coefficient of colloids is the continuity equation for the
number densityF(r , t) of colloidal spheres

where∇ is the gradient operator with respect to positionr and
v is the thermally averaged translational velocity of a colloidal

* E-mail: j.k.g.dhont@fz-juelich.de.
† Forschungszentrum Ju¨lich.
‡ Ludwig Maximilians University.
(1) Ludwig, C.Sitzungsber. Akad. Wiss. Wien Math. Naturwiss. Kl.1856, 20,

539.
(2) Piazza, R.Philos. Mag.2003, 83, 2067-2085.
(3) Morozov, K. I.J. Magn. Magn. Mater.1999, 201, 248-251.
(4) Putnam, S. A.; Cahill, D. G.Langmuir2005, 21, 5317-5323.
(5) Rauch, J.; Ko¨hler, W. Phys. ReV. Lett. 2002, 88, art. no. 185901.
(6) Duhr, S.; Arduini, S.; Braun, D.Eur. Phys. J. E2004, 15, 277-286.
(7) Bringuier, E.; Bourdon, A.Phys. ReV. E 2003, 67, 011404.
(8) Parola, A.; Piazza, R.Eur. Phys. J. E2004, 15, 255-263.
(9) Dhont, J. K. G.J. Chem. Phys.2004, 120, 1632-1641.
(10) Dhont, J. K. G.J. Chem. Phys.2004, 120, 1642-1653.

(11) Piazza, R.; Guarino, A.Phys. ReV. Lett. 2002, 88, 208302.
(12) Duhr, S.; Braun, D.PNAS, accepted.
(13) Fayolle, S.; Bickel, T.; Le Boiteux, S.; Wu¨rger, A.Phys. ReV. Lett.2005,

95, 208301.

∂

∂t
F(r , t) ) D∇2F(r , t) + DT∇2T(r , t) (1)

∂

∂t
F(r , t) ) -∇‚[v(r , t)F(r , t)] (2)

1674 Langmuir2007,23, 1674-1683

10.1021/la062184m CCC: $37.00 © 2007 American Chemical Society
Published on Web 12/23/2006



sphere. The velocity of a colloidal particle will be calculated on
the basis of thermodynamic arguments. This can be done on the
diffusive time scale (typically on the order of a few nanoseconds),
where inertial forces on colloidal spheres can be neglected. The
noninertial forces thus add up to zero, which is known as “force
balance”.14,15 There are generally two noninertial forces to be
distinguished: the forceF that arises from direct, nonhydro-
dynamic interactions between colloidal particles and its sur-
roundings in a concentration and temperature gradient and the
force Fh due to hydrodynamic friction of the colloidal sphere
with the solvent. Hydrodynamic interactions between colloidal
spheres need not be considered here for single-particle diffusion
(for interacting colloids, these hydrodynamic interaction con-
tributions can be included on the basis of the Smoluchowski
equation as discussed in ref 10). The hydrodynamic force is then
proportional the velocity of the sphere

whereγ is the friction coefficient. In the case of a charged colloidal
particle, the electrolyte contribution to the friction coefficient is
at most on the order of a few percent. Electrolyte friction will
therefore be neglected, so that the friction coefficient is simply
equal to the friction coefficient of the core with the solvent

whereη0 is the shear viscosity of the solvent andR the radius
of the colloidal spheres. Force balance implies that

From eqs 5 and 3, it follows that

An equation of motion for the colloid density is thus obtained
from eqs 2 and 6 once an expression forF is found. This force
will be obtained from thermodynamics and will turn out to be
equal to a linear combination of gradients in colloid density and
temperature, rendering eq 2 of the form in eq 1. This then leads
to expressions for the thermal diffusion coefficient of a colloidal
particle.

The force can be obtained from thermodynamics as follows.
Like in ref 9, the system under consideration is divided into
subsystems, which will be referred to hereafter as “boxes”. These
boxes are assumed to be large enough to allow them to be treated
as thermodynamic systems on their own. Each box can be regarded
in internal equilibrium when gradients in density and temperature
are small enough to ensure a very slow evolution of the global
colloid concentration and a slow heat transport. Gradients are
supposed to be sufficiently small so that the largest internal
relaxation time of a box is small compared to mass and heat
transport times. Consider two neighboring boxes “1” and “2”.
Their volumes are equal toV, while the prescribed and fixed
temperature in box 1 is equal toT and in box 2 equal toT + δT.
There areN1

c colloidal particles in box 1 andN2
c in box 2. For

simplicity, we shall consider the case where only H+ ions
dissociate from the surfaces of colloids and where an acid HA
is added to the solution, which completely dissociates into H+

and A-. The final expression for the thermal diffusion coefficient
is also valid for other types of ions. The number of H+ ions in
a box is denoted asN1

+ for box 1 andN2
+ for box 2. Likewise,

the number of A- ions is denoted asN1
- andN2

-, and the number
of solvent molecules in boxes 1 and 2 is denoted asN1

s andN2
s,

respectively. We have to calculate the reversible workδwrev

necessary to displace, in a quasi-static manner,δNc colloidal
spheres from box 1 to box 2. That is, an external force, that is
infinitesimally less in amplitude than the force-F, acts on the
colloidal spheres, which are then quasi-statically transported in
the direction in which they will diffuse if no external force would
be present. The reversible work

per moved colloidal particle is related to the forceF, which we
set out to calculate as

whereL is the distance between the centers of box 2 and box
1, which is the distance over which the colloidal particles are
displaced when moved from box 1 to box 2. Hence

Substitution into eqs 6 and 2 and comparing to eq 1 leads to17

whereD0 ) kBT/γ is the Einstein diffusion coefficient (withkB

Boltzmann’s constant). In the derivation of these expressions,
only the leading order terms in deviations from mean values of
the density and temperature are accounted for. Terms like|∇F|2
and (∇T)‚(∇F) are thus neglected.

It should be noted that the definition of the thermal diffusion
coefficient used in this paper complies with the equation of motion
(eq 1). Different definitions are sometimes used, where, for
example,DT in eq 1 is replaced byFDT, or c(1 - c)DT in case
of binary mixtures (withc the molar fraction of one of the species).

A thermodynamic approach relies on the assumption that there
is local equilibrium, which is the case when gradients in
temperature and concentration are small. Nonlinear effects for
large temperature gradients have been observed experimentally
in ref 16.

3. Force on a Colloidal Sphere:
Heuristic Considerations

Before giving a more systematic derivation of an explicit
expression for the reversible work, the intuitive approach given
below readily leads to the correct result.

Imagine the following pathway to move a colloidal particle
from box 1 to box 2. First, a force is applied which reversibly
breaks off the interface. That is, the solvation layer is forced to
attain the bulk solvent structure, and ions are attached to the
surface of a colloidal sphere to render it uncharged. The reversible
work to do this is minus the reversible workWi

rev(T) involved
in building up the interface at temperatureT. Then, the core

(14) Batchelor, G. K.J. Fluid Mech.1976, 74, 1.
(15) Dhont, J. K. G.An introduction to dynamics of colloids; Elsevier:

Amsterdam, 1996.

(16) Duhr, S.; Braun, D.Phys. ReV. Lett. 2006, 96, 168301.
(17) In a comment in ref 9 section VI, this expression for the single-particle

thermal diffusion coefficient was cited, except that instead ofWrev the chemical
potentialµcs

f for the “complexed colloidal sphere” appears. This is not correct:
only that part of the chemical potential related to reversible work appears in the
expression for the single-particle thermal diffusion coefficient.

Fh(r , t) ) -γv(r , t) (3)

γ ) 6πη0R (4)

0 ) F(r , t) + Fh(r , t) (5)

v(r , t) ) F(r , t)/γ (6)

δWrev ) δwrev/δNc (7)

δWrev ) -L ‚F (8)

F ) -∇Wrev(r ) ) -[∂Wrev

∂F
∇F + ∂Wrev

∂T
∇T] (9)

D ) D0âF ∂Wrev

∂F

DT ) D0âF ∂Wrev

∂T
(10)
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material of the colloidal particle is reversibly heated to establish
a raise in temperature ofδT, which requires no work as far as
the interface is concerned. The core is then moved to box 2,
which requires no work as far as the interface is concerned,
because the interface is simply nonexistent during this displace-
ment. Then, the solvation layer is restructured and the electrical
double layer is recharged, which requires work equal toWi

rev(T
+ δT). On moving the colloid from box 1 to box 2, reversible
work is done against gradients in the osmotic pressureΠ. For
noninteracting colloids,Π ) FkBT, so that the accompanied body
force is equal to-∇Π ) -kB[T∇F + F∇T]. The work per colloidal
particle is thus equal to-kB[T∇ ln{F} + ∇T]. This work includes
the displacement of an equal volume of electrolyte solution in
opposite direction. Hence

This leads to the following expressions for the diffusion
coefficients17

The first term within the square brackets forDT is the “ideal gas”
contribution, and the second term is the contribution due to the
presence of the double layer.

Besides the reversible work involving the solvation layer and
the double layer, there are two additional types of internal degrees
of freedom which require work (i) to build up the structured
solid colloidal material in contact with electrolyte solution in the
immediate vicinity of the surface of the colloidal sphere and (ii)
work to build up the bulk solid core material of the colloidal
particle including the accompanied replacement of solvent by
the solid colloidal material. These two types of degrees of freedom
can be incorporated in the reversible work and can simply be
added in eq 12. The bulk contribution (ii) has been discussed in
detail in ref 18.

The result (eq 12) will be derived in the following section in
a more systematic way.

4. Force on a Colloidal Sphere: Thermodynamics

The following is an extension of the discussion in ref 10,
where now the solvent molecules and ions are explicitly accounted
for.

The reversible workδwrev necessary to achieve the displace-
ment of colloidal spheres from box 1 to box 2 is equal toδF +
S1δT1+ S2δT2, whereδF is the accompanied change in Helmholtz
free energy. The entropyS1 is the entropy carried by the material
that is taken from box 2 to box 1 on moving the colloids from
box 1 to box 2, andδT1 ) -δT is the accompanied change of
temperature of that material. Similarly,S2 is the entropy carried
by the material moved from box 1 to box 2, andδT2 ) δT is
the temperature change of that material. These entropic terms
cancel against similar contributions in the Gibbs-Duhem relation
that will be used later in our analysis (as is shown in the Appendix).
For brevity, we shall therefore not denote these entropic terms
in equations here after. All entropic contributions of the form

SδT cancel at the end. Hence

The Helmholtz free energy of each of the two boxes is a function
of the number of solvent molecules, ions, and colloidal particles
in the box, its volume, and the temperature. LetδNj

s andδNj
(

denote the change of the number of solvent molecules and ions
(H+ and A-) in boxj associated with an exchange ofδNccolloidal
particles. The reversible work necessary for the above-described
process is then equal to

Expansion of the free energies with respect toδNc, δNj
s, and

δNj
(, using∂F/∂Nj

c ) µc,j, with µc,j the chemical potential of the
colloidal particles in boxj, and similarly for the solvent molecules
and the ions, gives

The chemical potentials appearing in eq 15 are interpreted as
follows. The chemical potential of a colloidal sphere is understood
to be the difference in free energy of an uncharged colloid in its
“dry state” and in the dissolved state in the suspension. It contains
therefore two contributions: (i) the free energy that is released
on spontaneous formation of the solvation layer and the double
layer on transferring a “dry” colloidal sphere to the suspension
and (ii) the gain in entropy of a colloidal sphere due to its freedom
to take any position in the suspension. In particular, the gain in
entropy of ions that are dissociated from the surface of a colloidal
sphere is included in the chemical potential of a colloid. Similarly,
the chemical potential of an added salt molecule is defined as
the free energy change on dissolving a “dry” salt molecule. The
separate chemical potentialsµj

+ and µj
- of H+ and A- are

therefore not independent and will only occur in the combination
µsalt,j ≡ µj

+ + µj
- , which will be referred to as “the chemical

potential of a salt molecule”.
With the above definitions of chemical potentials, the changes

δNj
( are changes solely due to transport of H+ - A- pairs, that

is, of salt molecules. It follows from electroneutrality thatδNj
+

) δNj
-, which will be denoted simply asδNj

salt. This is the
change of the number of salt molecules in boxj. Hence, from
eq 15

The number of solvent molecules and the number of ion pairs
H+ - A- that is transported is connected to the number of colloidal
particles that are moved from box 1 to box 2. On moving a
colloidal particle from box 1 to box 2, an equal volume of
electrolyte solution will be moved from box 2 to box 1, when
thermal expansion of colloidal material and solvent is neglected.
The total number of bulk solvent molecules within the volume
of a colloidal sphere in boxj is equal toVc

0 Fs,j
0 δNc, whereVc

0 is
the volume occupied by the core of a single colloidal sphere and
Fs,j

0 is the bulk concentration of solvent in boxj, that is, the(18) Würger, A. Europhys. Lett.2006, 74, 658-664.

δwrev ) δF (+ entropic contributions) (13)

δwrev ) δF ) F(N1
c - δNc, N1

s - δN1
s, N1

+ - δN1
+, N1

- -

δN1
-, V, T) + F(N2

c + δNc, N2
s + δN2

s, N2
+ + δN2

+, N2
- +

δN2
-, V, T + δT) - F(N1

c, N1
s, N1

+, N1
-, V, T) -

F(N2
c, N2

s, N2
+, N2

-, V, T + δT) (14)

δwrev ) {µc,2 - µc,1}δNc + µs,2δN2
s - µs,1δN1

s + µ2
+δN2

+ +

µ2
-δN2

- - µ1
+ δN1

+ - µ1
- δN1

- (15)

δwrev ) {µc,2 - µc,1}δNc + µs,2δN2
s - µs,1δN1

s +

µsalt,2δN2
salt - µsalt,1δN1

salt (16)

F ) -kBT∇ ln{F} - [kB +
∂Wi

rev(T)

∂T ]∇T (11)

D ) D0

DT ) D0[F
T

+ âF
∂Wi

rev(T)

∂T ] (12)
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concentration of solvent outside the solvation layer. The molar
volume Vc

0 of the colloids is taken independent of the colloid
concentration and temperature, as indicated by the superscript
0. The molar volumeVc

0 is to a good approximation simply equal
to the volume of a colloidal sphere, where the relatively small
differences due to thermal expansion of the colloidal material
are neglected. There is an excess number of moleculesΓs within
the solvation layer that is attached to each colloidal sphere. The
free energy connected to the formation of this solvation layer is
already incorporated in the chemical potential of a colloidal
particle, as discussed above. The changes of the number of solvent
moleculesδNj

s in eq 16 do therefore not include the excess
amounts of solvent molecules within the solvation layers. Hence

This equation allows one to expressδNj
s in eq 16 in terms ofδNc.

A similar relation can be derived for the change of the number
of ions. Hence, just as for the solvent molecules we have

whereFsalt,j
0 () F(

0 ) is the number concentration of ion pairs ()
salt molecules) outside the double layer.

Substitution of eqs 17 and 18 into eq 16 gives

or, in obvious notation

Here, theδ’s refer to the differences between box 2 and box 1.
The expression (eq 20) includes both single-particle and

interaction contributions. In order to separate these two contribu-
tions, the chemical potential of the solvent molecules and the
ions within the suspension are defined through an osmotic
equilibrium. That is, we shall imagine each box to be in osmotic
equilibrium with a reservoir of electrolyte solution with the
corresponding temperature, where the membrane is permeable
for solvent and ions but not for colloids. The physics behind the
introduction of such a reservoir is as follows. The dynamics of
the small species (the solvent molecules and the ions) are much
faster compared to the colloidal particles. These small species
are therefore always in equilibrium with the field imposed by
the instantaneous configuration of colloidal particles, provided
that each box is itself in internal equilibrium. In particular, the
small species inside the solvation layer and the double layer are
in equilibrium with the small species outside these layers. The
solvent molecules and ions outside the solvation layer and double
layer are now formally regarded as an osmotic reservoir. The
Gibbs-Duhem relation for the suspension reads (entropic
contributions are again not denoted here, since these cancel against
the entropic contributions in eq 13, as shown in the Appendix)

wherep is the mechanical pressure within the suspension with
volumeV. Note that, as for eq 19, the differencesδ refer to the
differences between box 2 and box 1. Since differences between
the two boxes are (infinitesimally) small, the numberNc of
colloidal particles in eq 21 is “the average” of the number of
particles in the two boxes, and similarly for the other extensive

quantities. The corresponding Gibbs-Duhem relation for dif-
ferences between the reservoirs of boxes 2 and 1 is

where a sub- or superscript “ r” of “reservoir” is added to indicate
that these quantities relate to the osmotic reservoir. This index
is missing onµs andµsalt, since these are equal in the suspension
and the osmotic reservoir. Since the osmotic pressure is defined
as

it follows from eqs 21 and 22 that

whereF ) Nc/V andFsalt ) Nsalt/V are the number densities of
colloids and salt molecules, respectively. Substituting this
expression forδµc into eq 19 leads to

The number densityFs
0 of solvent molecules outside the

solvation layer is different from the “thermodynamic” density
Fs ) Ns/V in the suspension. There is an excess number of
moleculesΓs within the solvation layer that is attached to each
colloidal sphere. This excess amount of solvent molecules in the
solvation layer of a colloidal sphere is defined as

whereFs(r) is the local solvent molecule concentration at a radial
distancer from the center of a colloidal sphere. The Gibbs dividing
surface is defined here such that the adsorbed amount of solid
colloidal core material is zero. Since the total numberVFs of
solvent molecules is equal toNcΓs + (V - NcVc

0)Fs
0, it follows

that

whereæ ) Vc
0F is the volume fraction of colloids.

Due to electroneutrality of the colloidal surface plus its double
layer, the excess amount of H+ ions is equal to-Z, whereZ is
the valence of a colloidal sphere (including the sign of the charge).
In the present case, where H+ ions dissociate from the surface,
Z is a negative number. The number of adsorbed salt molecules
Γsalt in a single double layer is thus equal to

where

are the excess amounts of H+ or A- ions in the double layer.
Here,F((r)is the local number concentration of H+ and A- around
a colloidal sphere, which can be calculated within the scope of
the Debye-Hückel theory for small surface potentials. Similarly
as for solvent molecules, the thermodynamic concentration of

δNj
s ) -Vc

0 Fs,j
0 δNc (17)

δNj
salt ) -Vc

0Fsalt,j
0 δNc (18)

δwrev/δNc ) µc,2 - µc,1 - Vc
0[Fs,2

0 µs,2 - Fs,2
0 µs,1 +

Fsalt,2
0 µsalt,2- Fsalt,1

0 µsalt,1] (19)

δwrev/δNc ) δµc - Vc
0δ[Fs

0µs] - Vc
0δ[Fsalt

0 µsalt] (20)

0 ) Vδp - Ncδµc - Nsδµs - Nsaltδµsalt (21)

0 ) Vrδpr - Nr
sδµs - Nr

saltδµsalt (22)

Π ) p - pr (23)

δµc ) 1
F

δΠ + 1
F
(Fs,r - Fs)δµs + 1

F
(Fsalt,r - Fsalt)δµsalt

(24)

δwrev/δNc ) 1
F

δΠ - Vc
0δ[Fs

0µs] - Vc
0δ[Fsalt

0 µsalt] +

1
F
(Fs,r - Fs)δµs + 1

F
(Fsalt,r - Fsalt)δµsalt (25)

Γs ) ∫r>R
dr [Fs(r) - Fs

0] (26)

Fs ) FΓs + (1 - æ)Fs
0 (27)

Γsalt ) Γ- ) Γ+ + Z (28)

Γ( ) ∫r>R
dr [F ((r) - F(

0 ] (29)
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salt is equal to

whereFsalt
0 ) F(

0 is the concentration of salt molecules outside
the double layer.

The chemical potential of solvent molecules away from a
colloidal particle, outside the solvation layer, is equal to that of
the osmotic reservoir. The concentrationFs

0 of such solvent
molecules is therefore equal to the concentrationFs,r of solvent
molecules in the reservoir for incompressible solvents. With the
neglect of the small contribution of thermal expansion of bulk
material (so thatδFs

0 ) 0), using eq 27 gives

Similarly, the concentrationFsalt
0 outside the double layer is equal

to the salt concentrationFsalt,r in the osmotic reservoir, so that
it follows from eq 30 that

Substitution of eqs 31 and 32 into eq 25 gives

This result can be written in an alternative form with the use of
the Gibbs adsorption equation

whereR is the radius of a colloidal sphere,γ is the surface
tension, andSi is the entropy of a single interface between the
colloidal material and the electrolyte solution, including the
solvation layer and double layer. As before, the location of the
Gibbs dividing surface is chosen such that the amount of adsorbed
solid colloidal material vanishes. The surface tensionγ is well-
defined for both thin and thick double layers. Since 4πR2γ is
equal to the free energy of the interface, it follows that

whereWi
rev is the reversible work involved in building up a

single interface, including the solvation layer and the electrical
double layer. The reversible workWrev ) δwrev/δNc necessary
to move a single colloidal sphere (see eq 8) thus follows from
eqs 33 and 35 as

The first termon the right-handsidedescribes theenergynecessary
to displace a colloidal particle against gradients in the osmotic
pressure. The second term is related to the work that is involved
in changing the temperature of a solvation layer and a double
layer and of the immediate surface of the colloidal sphere.

For very dilute suspensions, where colloidal spheres do not
interact with each other,Π ) FkBT. From eqs 10 and 36, the

following expressions for the diffusion coefficients are then found

which reproduces eq 12.
The interaction contributions to the osmotic pressure9,10should

be added to the above results for concentrated colloids.
As mentioned before, what has been neglected are the degrees

of freedom associated with the bulk material of the core of a
colloidal particle. The reversible work that is required to build
up the solid bulk core material of a colloidal sphere (and the
accompanied displacement of solvent) can simply be added to
the work in eq 37.

5. Double-Layer Free Energy and Reversible Work

In order to compare the prediction (eqs 12 and 37) for the
thermal diffusion coefficient to experiments, the reversible work
Wi

rev involved in creating an interface must be expressed in terms
of, for example, salt concentration and the radius of the colloidal
sphere. In the present section, only the double-layer contribution
Wdl

rev to the interface work is considered.
It will be assumed that the dielectric constant within the core

of a colloidal sphere is constant and there are no charges inside
the core of the colloidal particle, that is, all charges are assumed
to be located on its surface.

When the dielectric constant within the core of the colloidal
particle is homogeneous, independent of position, the surface
chargeσ is proportional to the radial derivative of the electric
potentialΦ at the surface of the colloidal particle, that is, at the
radial distancer ) R, with R the radius of the colloidal sphere,
σ ) -ε(dΦ(r)/dr)|r)R, withε the dielectric constant of the solvent.
For moderate electric surface potentials, the electric potentialΦ
within the double layer is equal to19

whereΦs ) Φ(r ) R) is the surface potential and

is the reciprocal Debye length, withe> 0 the elementary charge,
kB Boltzmann’s constant,Fj

0 the number density of ions of
speciesj outside the double layer, which carryzj elementary
charges.

The surface potential can be expressed in terms of the total
chargeQ) 4πR2σ on a colloidal sphere from the relation between
the charge density and the radial derivative of the potential at
the colloidal surface as mentioned above

For some colloidal particles (like carboxyl-modified polystyrene),
the surface groups are fully dissociated, whereas for other systems
(like bare silica), the surface groups are only partially dissociated,
depending on the pH.

The free energy of a colloidal particle is, by definition, the
change in free energy on immersion of a colloid in its “dry state”
into the dispersion. This free energy is either the Helmholtz free

(19) Verwey, E. J. W.; Overbeek, J. Th. G.Theory of the stability of lyophobic
colloids; Dover publications: New York, 1999.

D ) D0

DT ) D0[F
T

+ âF
∂Wi

rev(T)

∂T ] (37)

Φ(r) ) Φs

exp{-κ(r - R)}
r/R

(r g R) (38)

κ ) x e2

kBTε
∑

j

Fj
0 zj

2 (39)

Φs ) Q
4πεR

1
1 + κR

(40)

Fsalt ) FΓsalt + (1 - æ)Fsalt
0 (30)

-Vc
0δ[Fs

0µs] + 1
F
(Fs,r - Fs)δµs ) -Γsδµs (31)

-Vc
0δ[Fsalt

0 µsalt] + 1
F
(Fsalt,r - Fsalt)δµsalt ) -Γsaltδµsalt

(32)

δwrev/δNc ) 1
F

δΠ - Γsδµs - Γsaltδµsalt (33)

-Γsδµs - Γsaltδµsalt ) 4πR2δγ + SiδT (34)

-Γsδµs - Γsaltδµsalt ) δWi
rev (35)

δWrev ) 1
F

δΠ + δWi
rev (36)
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energy under constant volume or the Gibbs free energy under
constant pressure. Before immersion, the colloidal particle is not
solvated and surface groups are not dissociated. On immersion,
the colloidal particle will gain entropy since it is free to move
through the dispersion, the surface of the particle will be solvated,
and ions will be released from the surface while building up the
double layer. The free energy to build up the double layer consists
of two parts: (i) the free energy that it takes to create the ion
cloud around the colloid and to charge its surface, which can be
calculated via a “charging process”; and (ii) the gain in entropy
on release of ions from the surface of the colloidal particle on
charging the surface. These two contributions have been discussed
in detail in chapter 3 of the classic book of Verwey and
Overbeek.19 The charging process costs an energy in the form
of reversible workWdl

rev equal to

The change in free energy due to the release of ions from the
surface is equal to-QΦs. The double-layer free energyFdl

(relative to the “dry” colloidal particle) is thus equal to

The free energy of the double layer must be negative, since
otherwise the double layer would be unstable: the free energy
would be lowered by decharging the colloidal particle if the free
energy were positive. The reversible work is thus equal but
opposite in sign to the free energy, as a result of the entropic
contribution due to the release of ions from the colloid surface.

Note that, according to eq 42, the contributionγdl of the double
layer to the interfacial tension is equal to

within the Debye-Hückel approximation, where in the second
line eq 40 has been used. For thin double layers, this reduces to
γdl ) -εκΦs

2/2, which is the expression that is used in, for
example, refs 11 and 20 (in Gaussian units).

6. Explicit Expression for the Soret Coefficient

Explicit expressions for the double-layer contribution to the
single-particle diffusion coefficient are obtained by substitution
of eqs 39-41 into eq 37. Again neglecting small contributions
from thermal expansion, it is found that the double-layer
contribution to the Soret coefficientST

(dl) ) DT/FD is given by

The “ideal gas” contribution (the first term on the right-hand
side in eq 44) stems from work against the osmotic pressure,
where additional terms should be accounted for when intercol-
loidal interactions become important at higher concentrations
(see refs 9 and 10). The last term in this equation is only important
when the total charge on the colloidal spheres is temperature-
dependent. This is generally the case for colloidal particles where
the surface groups are only partially dissociated.

In order to compare with experiments, where the dependence
of the Soret coefficient on the Debye lengthλDH ) κ-1 and the
radius R of the colloidal spheres is probed, eq 44 is more
conveniently written as

wherelB ) âe2/4πε is the Bjerrum length (which is 0.71 nm for
water at room temperature). This result is valid for arbitrary
Debye screening lengths. Note that the dimensionless combination
4πlB

2σ/e is the number of unit charges on a fictitious sphere with
radiuslB with the same charge density as the colloids. As will
be seen in section 7, where a comparison with experiments is
made, the values that this dimensionless group takes vary from
about 0.01 for polystyrene spheres to 1 for SDS micelles. The
temperature dependence of the dielectric constant cannot be
neglected, since for water at room temperature, d lnε/d ln T )
-1.34.

7. Comparison with Experiments and Other Theories

In this section, we shall compare the theoretical predictions
in eq 45 with experiments on two different types of systems:
carboxyl-modified polystyrene spheres of various radii but equal
charge density12and (ii) a SDS micellar solution.11 In particular,
the salt concentration dependence of the Soret coefficient will
be discussed as well as its colloid size dependence. The
polystyrene spheres are always large compared to the Debye
length, while for the micellar system, the Debye length is
comparable to or larger than the size of the micelles. The table
gives the parameters for the two systems that are needed for a
quantitative comparison.

A comparison with experiments on colloidal polystyrene
spheres with identical surface chemistry but differing radii is
given in Figure 1, where data are taken from ref 12. Here, the
Soret coefficient is plotted against the Debye-Hückel screening(20) Rückenstein, E.J. Colloid Interface Sci.1981, 83, 77-81.

Figure 1. The Soret coefficient at room temperatureT ) 298 K
as a function of the Debye-Hückel screening lengthλDH ) κ-1 for
carboxyl-modified polystyrene spheres with a surface charge ofσ
) 4500e/µm2, or, equivalently, 4πlB

2σ/e ) 0.029. The radii of the
spheres are 550, 250, and 100 nm, as indicated in the figure. The
solid lines are the predictions from eq 45 with dQ/dT ) 0, and the
data points are for polystyrene spheres.12 The only adjustable
parameter for each curve is the offset for zero Debye length, which
is related to the solvation layer contribution and the contribution
associated with the degrees of freedom within the bulk solid core
material of a colloidal sphere.
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lengthλDH ) κ-1. The surface charge density of the spheres as
measured with electrophoresis is equal toσ ) 4500e/µm2, and
hence, 4πlB

2σ/e ) 0.029. Since the surface groups for these
particles are fully dissociated, the charge is independent of
temperature, that is dQ/dT ) 0. The Bjerrum length for water
at room temperature is 0.71 nm and d lnε/d ln T ) -1.34.

The only adjustable parameter in a comparison of experimental
values for the Soret coefficient and eq 45 is the offset for zero
Debye length, which is related to the contribution of the solvation
layer to the reversible workWi

rev to create an interface and the
contribution associated with the degrees of freedom within the
bulk solid core material of the colloidal sphere. The solid curves
in Figure 1 correspond to eq 45 with dQ/dT ) 0. As can be seen,
the agreement with the experiments is quite reasonable, both for
the salt-concentration dependence of the Soret coefficient and
for the dependence on the radii of the colloids.

The variation of the offset in Figure 1 with the radius of the
colloidal spheres indicates that the solvation layer is the main
additional contribution to the single-particle Soret coefficient
and that the contribution from colloidal bulk-material is much
less important. This is analyzed in more detail in ref 12.

Thermodiffusion of SDS micellar particles has been explored
in ref 11. These particle are much smaller than the polystyrene
spheres discussed above. For this system, the particle radius is
R ) 2.7 nm and the charge density is 0.218e/nm2, and hence,
4πlB

2σ/e ) 1.38.21 This system thus covers an entirely different
part of parameter space as compared to the above-mentioned
polystyrene spheres. For the SDS micelles, it is reasonable to
assume that the surface groups are dissociated to an extent that
allows the neglect of the temperature dependence of the charge
in eq 45. Care should be taken when comparing these experiments
with the prediction in eq 45, since now, according to eq 40, the
dimensionless parameterâeΦs can be large, which invalidates
the Debye-Hückel approach (forλDH ) 0.63 nm,âeΦs) 1, and
for λDH ) 1.07 nm, we haveâeΦs ) 1.5). The above theory is
thus certainly not applicable whenλDH is larger than about 1 nm.
For such small Debye lengths, the continuum Poisson-Boltzmann
approach might be questionable. Nontheless, we compare the
prediction in eq 45 with the experimental data in Figure 2. As
can be seen, the salt concentration dependence of the Soret
coefficient is correctly predicted for Debye lengths where the
Debye-Hückel theory is valid. The theory and experimental
data begin to deviate from the experimental data at a Debye
length above whichâeΦsbecomes larger than unity, as expected.
As before, the offset is an adjustable parameter. In ref 11, it is
stated that, even for potentials such thatâeΦs is much larger than
unity, the Debye-Hückel theory is still applicable when an
“effective charge” is used. In the above comparison, we used the
charge density as reported in ref 21 for this system for lower
potentials and refrained from using an “effective charge”.

On the basis of a capacitor analogon with the electric-double-
layer/charged-colloid system, the following expression for the
Soret coefficient may be obtained12

where the “ideal-gas contribution” has been added. This
expression is precisely the result in eq 45 in the limit of thin
double layers, whereκR. 1. Note that the polystyrene particles
are very large in comparison to the double-layer thickness. The
experimental results in Figure 1 can therefore also be described
on the basis of the capacitor model.

In ref 20, an expression for the thermophoretic velocity is
derived for thin double layers on the basis of a Navier-Stokes
equation together with thermodynamic relations. By combining
eq 27 from ref 20 and eq 43 for the double-layer contribution
to the surface tension withκR . 1, it is found that

This expression is used in ref 11 to interpret the experimental
data on SDS micelles discussed above. It predicts that the Soret
coefficient is a quadratic function of the Debye screening length.
This result does not agree with our prediction in eq 45, not for
thin and also not for extended double layers. The reasons for this
are (i) that it is not the free energy but only the reversible work
that determines the Soret coefficient and (ii) that eq 47 assumes
thin double layers, whereas the double layer thickness for the
micellar SDS system is actually comparable to or larger than the
size of the micelles. We therefore feel that the agreement between
the proposed theory in ref 11 with their SDS micellar data is
fortuitous.

Bringuier and Bourdon7 propose an expression for the thermal
diffusion coefficient in terms of the temperature derivative of
the total internal energy (see their eq 13), based on arguments
that are put forward by van Kampen.22 Disregarding the
temperature dependence of the total charge, which amounts to
taking the limitE f ∞ in their eq 17, whereE is the energy
related to the thermally activated desorption of ions from the
surface of the colloids, and using their expression 16 forU in

(21) Bucci, S.; Fagotti, C.Langmuir1991, 7, 824.
(22) van Kampen, N. G.J. Phys. Chem. Solids1988, 49, 673-677.

Table 1. System Parameters

system radius [nm] σ
4πlB

2σ/
e

d ln ε/
d ln T

lB
[nm]

polystyrene 550/250/100 4500e/µm2 0.029 -1.34 0.71
SDS micelles 2.7 0.218e/nm2 1.38 -1.34 0.71

Figure 2. The Soret coefficient at room temperatureT ) 298 K
as a function of the Debye-Hückel screening lengthλDH ) κ -1 for
SDS micelles with a surface charge ofσ ) 0.218 e/nm2, or,
equivalently, 4πlB

2σ/e ) 1.38. The radii of the spheres are 2.7 nm.
The solid lines are the predictions from eq 45 with dQ/dT ) 0. The
experimental data are taken from ref 11. As before, the only adjustable
parameter is the offset at zero Debye length. The verticle arrows
indicate the Debye lengths whereâeΦs is 1 and3/2, beyond which
the Debye-Hückel approach becomes invalid.
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TST
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their eq 13 gives, for small colloid concentrations

Here, the temperature dependence of the total charge as well as
the dielectric constant have been neglected. Within this ap-
proximation, the above expression is in accordance with our
expression (eq 45), for both thin and thick double layers. The
correspondence between this single-particle result for charged
colloids from ref 7 and our expression (eq 45) for the Soret
coefficient is quite satisfactory in view of the fundamentally
different approaches that have been employed. For interacting
systems, however, there is a difference between the general result
in eq 13 of ref 7 and what is said in the present paper and refs
9 and 10. According to refs 9 and 10, interaction contributions
are related to temperature and density derivatives of the osmotic
pressure rather than derivatives of the internal energy (for the
isothermal collective diffusion coefficient, this is has long been
known). The internal energyU due to intercolloidal interactions
is introduced in ref 7 in a rather uncontrollable manner. If the
reversible work is used instead ofU, and one recognizes that
reversible work is done (i) against gradients in the osmotic pressure
which includes interaction contributions and (ii) to build up single-
particle colloidal complexes, the expression that would have
been obtained in ref 7 fully agrees with the results of the present
paper and refs 9 and 10.

Similar considerations as in ref 7 based on van Kampen’s
work22 lead to the correct expression for the Soret coefficient in
ref 18 (the expression between their eqs 4 and 5), provided that
the “energy”u is interpreted as the reversible work to build up
a colloidal sphere. The contribution to the reversible work
associated with the bulk core material of a colloidal sphere and
the displaced amount of solvent by the core has been extensively
discussed in ref 18.

8. Summary and Conclusions

On the basis of force balance on the Brownian time scale in
combination with thermodynamic considerations concerning the
force on a colloidal sphere resulting from gradients in concentra-
tion and temperature, it follows from the present analysis and
what has been said in ref 9 that the collective diffusion coefficient
D and the thermal diffusion coefficientDT are given by

whereΠ is the osmotic pressure (which is a function of the
colloid number densityF, the temperatureT, and the chemical
potentialµs of the solvent). In the temperature derivative ofΠ
in the expression forDT, the derivative also acts on the temperature
dependence of the chemical potential of the solvent (the variable
s represents the other variables on whichµs depends besides the
temperature). Furthermore,D0 is the Einstein diffusion coefficient
andâ ) 1/kBT (wherekB is Boltzmann’s constant). The first term
on the right-hand side of the expression forDT accounts for
direct interactions between colloidal particles and includes the
“ideal gas” contribution, while the second term is the single-
particle contribution. Here,Wc

rev is the reversible work that is
needed to build up a colloidal particle. This includes the creation

of (i) the solid bulk core material of the colloid and the associated
displacement of solvent, (ii) the structured layer of solid material
in the immediate vicinity of the solvent, (iii) the solvation layer,
and (iv) the electrical double layer. The results in eq 49 reproduce
the expression for the Soret coefficient given in ref 18 (see the
equation between their eqs 4 and 5), provided that the energy
u is interpreted as the reversible work to build up a colloidal
sphere.

What is neglected in eq 49 is thermal expansion of colloidal
core material and solvent and, more importantly, hydrodynamic
interactions between the colloidal spheres. Hydrodynamic
interactions become significant at higher colloid concentrations
and can be accounted for in a microscopic approach as described
in ref 10.

The single-particle contribution to the Soret coefficient related
to the electric double layer is calculated within the Debye-
Hückel approximation, leading to eqs 44 and 45. This prediction
is shown to be in accordance with experiments on polystyrene
spheres (thin double layers) and micelles (thick double layers),
within the parameter range where the Debye-Hückel ap-
proximation is valid. There is a single adjustable parameter when
comparingwithexperimentswhere thesalt concentration isvaried.
This is the intercept at zero Debye length, which is related to the
remaining contributions toWc

rev mentioned above.
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Appendix: The Entropic Contributions

It will be shown here that the entropic contributions to eq 13
and those arising from the Gibbs-Duhem relations for the
suspension and the osmotic reservoir cancel, provided that thermal
expansion is neglected and the solvent is incompressible. In ref
9, these entropic contributions were simply omitted.

For reversible isothermal changes, the reversible work is equal
to the change in free energy. The process considered here is also
isothermal (since the temperature of the two boxes is fixed).
However, in exchanging matter between the two boxes, this
matter experiences a change in its temperature. The free energy
must be corrected for these temperature changes in order to obtain
the reversible work. Since the changeδF in free energy is equal
to δF ) δwrev - SδT, we have to add the contributionSδT to
the calculatedδF in order to obtain the reversible workδwrev.

There is a single-particle contribution to the reversible work
that is related to the change in temperature of matter that is
exchanged. For example, the reversible work involved in building
up an electrical double layer is temperature-dependent. In
changing the temperature of a double layer, part of the exchanged
heat in order to change the temperature is therefore converted
into work. This latter contribution to the reversible work is a
single-particlecontributionwhichwill bedenoted in thisAppendix
asδwc

rev (where the subscript “c” stands for “colloid”). The total
reversible work is thus written as

The free energy and entropy are now understood to exclude the
single-particle internal degrees of freedom, which relate to the
solvation layer, the electrical double layer, and the solid material
of which the core of the colloids consists. Changes related to
these internal degrees of freedom of the “complexed colloidal
particles” are lumped into the single-particle contributionδwc

rev

TST
(dl) ) 1 + 1

4(4πlB
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e )2
1

(1 + κR)2

κR4

lB
3
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D ) D0â
∂Π(F, T, µs)

∂F

DT ) D0â[∂Π(F, T, µs(T, s))

∂T
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∂Wc
rev

∂T ] (49)

δwrev ) δF + SδT + δwc
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to the total work. It is precisely this single-particle contribution
that is considered explicitly in the present paper. The corre-
sponding degrees of freedom related to the electrical double
layer are treated explicitly in the present paper by explicitly
accounting for the electrolyte species that build the double layer
in thermodynamic relations. In this appendix, we shall disregard
these “internal degrees of freedom” of colloidal spheres, which
are responsible for single-particle thermal diffusion, and simply
lump them all together intoδwc

rev without further specification.
The similar “entropic contributions” of the formSδT that are
connected to the internal, single-particle degrees of freedom can
be treated similarly. Including these contributions would un-
necessary complicate notation: all species that are involved in
these internal degrees of freedom must be taken into account
explicitly in all equations. We shall therefore discuss only the
“interaction contributions” of the formSδT of the solvent and
of the colloids in this appendix. As mentioned above, contrary
to the free energy in eq 50, the change in free energy in eq 13
in the main body of the present paper includes the internal colloidal
particle degrees of freedom, which are lumped in eq 50 into the
contribution δwc

rev. Here, we will show that the remaining
entropic contributionSδT in eq 50 cancels against similar
contributions arising from Gibb-Duhem relations and that the
change in free energyδF in eq 50 is connected to interaction
contributions (except for the “ideal gas contribution”).

The “entropic contribution”SδTcan be obtained by considering
the exchange of matter between the two boxes in more detail.
What is actually happening during thermodiffusion is that all
particles drift coherently from one box to the other. Consider
therefore the process where all particles from box 1 drift to box
2. During the same time span, all particles within the neighboring
box (box 0, for example) diffuse to box 1, and all particles from
box 2 are displaced to the neighboring box (box 3, say). Since
the gradients in concentration and temperature are constant over
the length scale set by the size of the boxes, effectivelyδNc )
Nc,2 - Nc,1 particles are moved from box 0 to box 1, from box
1 to box 2, and from box 2 to box 3. In the main text and in ref
9, the change in free energy is calculated for a displacement of
theseδNc particles from box 1 to box 2. This is sufficient to
obtain an expression for the force acting on a particle, once the
entropic contributions are omitted. To include the entropic
contributionsSδT, however, we have to consider the whole
cascade of coherent displacements of colloidal particles, where
it suffices to ask for the change in free energy that is required
to move all particles from box 1 to box 2. The similar contributions
to the change in free energy from the entire cascade of
displacements can simply be added to obtain the change of free
energy of the whole system.

When thermal expansion of colloidal material and solvent is
neglected, the movement of colloidal spheres from box 1 to box

2 is accompanied by the movement of an equal volume of solvent
from box 2 to box 1. The process is sketched in the Figure 3.
The entropic contribution is now unambiguously defined asSsδT
- SlδT, whereSs is the entropy of the suspension andSl is the
entropy of an equal volume of pure solvent (note that the
temperatures of boxes 1 and 2 areT andT + δT, respectively).
It is very difficult to specify the entropic contributions if one
considers the displacement of just a subcollection of particles
from box 1 to box 2.

According to eq 50, we thus have (withV the volume of the
boxes)

wheressandsl are the entropy of the suspension and pure solvent
per unit volume.

The change in free energyδF/δNc per colloidal particle is
calculated in ref 9

where

Theδ onδν now refers to the difference between box 2 and box
1.

The Gibbs-Duhem relation for the suspension reads

whereSs is the entropy of the suspension,V the volume, andp
the mechanical pressure. The Gibbs-Duhem relation for the
osmotic reservoir (that was already introduced in section 4, see
eq 22) reads

where the index “r” refers to the reservoir. It follows from these
two relations and the definition ofν in eq 53 that

wheresr is the entropy of the pure solvent in the reservoir per
unit volume andΠ ) p - pr is the osmotic pressure. In deriving
this equation, it is considered that the suspension is space-filling
(that is,NcVc

0 + NsVs
0 ) V) and the fluid in the reservoir is space-

filling (that is Ns,rVs
0 ) Vr).

Figure 3. The left two figures depict the process of moving all colloidal particle from box 1 to box 2. The middle two figures depict the
accompanied opposite displacement of pure solvent. The right two figures depict the resulting total process. Not depicted are the colloidal
particles which are also displaced simultaneously during thermodiffusion (for example, from box 2 to box 3).

δwrev ) δF + V[ss - sl]δT + δwc
rev (51)

δF/δNc ) δν (52)

ν ≡ µc -
Vc

0

Vs
0

µs (53)

0 ) SsδT - Vδp + Ncδµc + Nsδµs (54)

0 ) SrδT - Vrδpr + Ns,rδµs (55)

δν ) V
Nc

[sr - ss]δT + V
Nc

δΠ (56)
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Combining eqs 51, 52, and 56 thus leads to the following
expression for the reversible workδWrev per colloidal particle

whereδWc
rev is the single-particle reversible work for a single

colloidal sphere. The entropy densities of pure liquid in the
suspension (outside the solvation and double layers of the colloids)
and of pure solvent in the osmotic reservoir differ from each
other due to the pressure differenceΠ in the suspension and the
osmotic reservoir. Now, according to the Gibbs-Duhem relation
for the pure solvent, there are only two independent intrinsic
variables. The entropy per unit volume, being an intrinsic variable,
is therefore a function of two intrinsic variables only. Bothsr and
sl can thus be regarded as functions of either the intrinsic variables
T, p or T, Fs (with Fs ) Ns/V the number concentration of pure
solvent). For the same reason, the number density is a function
of T andp. Hence

For nearly incompressible solvents,∂Fs(p′, T)/∂p′ is very small,
so that the difference in entropy density can be neglected, provided
that Π × a typical value of∂s(Fs, T)/∂Fs is not inversely
proportional to∂Fs(p′, T)/∂p′. Since ∂s(Fs, T)/∂Fs ) S/V -
(V/Ns)∂S(N, V, T)/∂V, and both terms on the right-hand side are
perfectly well-defined also for incompressible solvents, there is
no reason for∂s(Fs,T)/∂Fsto diverge for incompressible solvents.

This shows that the entropy contributions to the reversible
work on the right-hand side of eq 13 cancel against those arising
from the Gibbs-Duhem relations for the suspension and the
osmotic reservoir, provided that thermal expansion is neglected
and the solvent is incompressible.

With the neglect of the entropy contribution for incompressible
solvents and without the single-particle contribution, we thus
recover from eq 57 the resultδWrev ) (V/Nc)δΠ of ref 9 for the
interaction contribution to the reversible work per colloidal sphere.

LA062184M

δWrev ) V
Nc

[sr - sl]δT + V
Nc

δΠ + δWc
rev (57)

sr(pr, T) - sl(p, T) ) ∫p

pr dp′
∂s(p′, T)

∂p′ )

∫p

pr dp′
∂s(Fs(p′, T), T)

∂Fs
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