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Coupled transport at the nanoscale: The unreasonable
effectiveness of equilibrium theory
R. Dean Astumian*
Department of Physics, University of Maine, Orono, ME 04469

T
he Soret effect, also known as
thermodiffusion, is a classic
example of coupled transport
(1) in which directed motion

of a particle or macromolecule is
driven by f low of heat down a thermal
gradient. Generally, a particle moves
from hot to cold, but the reverse is
also seen under some conditions. Al-
though it has been known for �150
years, the microscopic explanation of
the Soret effect has remained unclear.
In a recent issue of PNAS, Duhr and
Braun (2) shed important light on the
molecular mechanisms of the Soret ef-
fect by using a technique of single-
particle tracking, which allows very
sensitive measurements of how thermo-
diffusion can be inf luenced by changes
in the environment, as well as how the
effect scales with parameters such as
particle size and surface charge. Al-
though there are numerous examples
(3, 4) of exciting possibilities for tech-
nological uses of thermodiffusion, the
importance of understanding the mech-
anism of the Soret effect goes beyond
the practical applications. Ultimately,
similar coupled processes in which a
chemical reaction drives directed mo-
tion of a protein may lie at the heart
of the mechanism of the biological mo-
tors and pumps essential for life. De-
tailed understanding of a variety of
coupled transport processes, including
the Soret effect, may lead to important
advances in our ability to inf luence
biological molecules and to use the in-
sight gained from natural systems to
help design synthetic nanoscale
machines.

The Soret effect can be characterized in
terms of two parameters: the thermal dif-
fusion coefficient DT, defined by the as-
sumed linear relationship between the
velocity and the thermal gradient v �
�DT�T, and the Soret coefficient, ST �
DT/D, which is the ratio between DT and
the scalar diffusion coefficient D. To un-
ravel the molecular mechanism for
thermodiffusion, it is essential to under-
stand how the parameters DT and ST de-
pend on the properties of the solvent and
solute (or colloidal particles) and to deter-
mine the general mechanisms by which
particles move along a thermal gradient.

There are two generic classes of
mechanisms by which thermodiffusion
can occur: one based on f luid dynam-

ics and the other based on thermody-
namics. In the class based on
hydrodynamics (5), the temperature
gradient leads directly to some imbal-
ance over the surface of the molecule
that results in a net mechanical force
F that drives the particle motion. A
similar mechanism, although not in-
volving a thermal gradient, has been
proposed as a description of a self-
propelled molecular motor driven by a
chemical reaction catalyzed by the mo-
tor that creates an osmotic gradient
that pushes the motor along (6). In the
second type of mechanism, the local
thermodynamic environment of the
particle is effectively isotropic (7). The
chemical potential of the particle de-
pends on temperature and hence on
space, but gently, in comparison with
the radius of the particle itself. The
particle moves preferentially to the
colder regions, in which it is thermody-
namically more stable, by random dif-
fusion that is biased by the increasing
stabilization in the colder regions, sim-
ilar to a Brownian motor mechanism
for molecular motors (8). The relative
importance of these two types of
mechanisms for a given particle of ra-
dius a depends on the ratio of the time
to diffusively explore a region as large
as itself, �tdiff � a2/D, vs. the time to
move the same distance by determinis-
tic thermodiffusion, �tT � a/v �
a/DT�T. These two times are approxi-
mately equal when �T � (aST)�1, so
for aST�T � 1, we expect the motion
to be governed by the deterministic
component of the velocity and the
mechanical force mechanism to be op-
erative, whereas for aST�T � 1, the
particle has time to diffusively explore
its environment, and the second,
Brownian-type mechanism is probably
operative. The experiments of Duhr
and Braun (2) were carried out in the
diffusive regime, where the particle is
always in local equilibrium. Their re-
sults are consistent with a mechanism
in which the dominant factor governing
the Soret coefficient is the temperature
dependence of the entropy change as-
sociated with hydration and with ionic
shielding, resulting in the expression

ST �
A

kBT �� shyd �
��eff

2

4��0T
�DH� ,

[1]

where A is the surface area of the par-
ticle, shyd is the specific entropy of hy-
dration, �eff is the effective surface
charge density, and �DH is the Debye
length. The coefficient � captures the
effect of the temperature dependence
of the Debye length and the dielectric
coefficient. Under most conditions, the
ionic shielding term dominates and
the Soret coefficient is positive, but the
charge density and Debye length can
be manipulated by changing the tem-
perature and the ionic environment to
suppress this shielding term, leading to
a negative Soret coefficient: particles
move toward warmer regions. Brenner
(9), based on an entirely different
perspective, suggested that DT is pro-
portional to the thermal expansion co-
efficient. This model predicts that in
water, the sign reversal of ST should
occur near 4°. It does so for DNA but
not for colloidal particles in the experi-
ments of Duhr and Braun (2). The
results are also consistent with the the-
oretical prediction based on the equal-
ity between the Soret coefficient and
the negative solvation entropy divided
by thermal noise that ST should be
proportional to the surface area of the
particles over a wide range of particle
sizes. This size dependence is in strong
contrast to previous theoretical models
based on hydrodynamics (5, 10, 11)
that suggest that DT should be inde-
pendent of the particle size, and hence
ST should be proportional to the ra-
dius. Thermodiffusion is patently a
thermodynamically nonequilibrium ef-
fect, driven by the energetically down-
hill f low of heat from hot to cold. It
thus is surprising that the relative con-
centration of particles at two arbitrary
positions �i and �j obeys an equilib-
rium-like exponential relationship
at steady state over a very wide range
of conditions (7) css(�j)/css(�i) �
exp{�ST[T((�j) � T(�i)]}. This equi-
librium-like behavior perhaps can be
understood in the context of a
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generalized f luctuation dissipation
theorem (12),

P�X, �̇	

P�X, ��̇	
� exp �
�E

kBT � , [2]

that states that even under strongly ther-
modynamically nonequilibrium condi-
tions, the ratio of the probability of a
transition to the probability of the re-
verse of that transition is the exponent
of the change in the internal energy of
the system due to the transition. In Eq.
2, � is a generalized position (and hence
�̇ is a generalized velocity), X is a gen-
eralized force, P[X, �̇] is the probability
density for a trajectory or sequence
of values �̇ and X, and the change in
internal energy of the system �E �
� X�̇dt � � Xd� is the integral of the
generalized force times generalized
displacement. The striking relation
�exp(��E/kBT) � 1 for the change
in internal energy averaged over many
trajectories follows immediately from
Eq. 2 (12).

For overdamped systems such as those
studied by Duhr and Braun (2), the gener-
alized fluctuation–dissipation relation can
be easily derived by using a Langevin
equation for particle motion (13),

R�̇ � U� � �2RkBT��� 	� t� , [3]

where the temperature is an explicit func-
tion of position and R is the coefficient
of viscous friction. Diffusion is viewed as
thermally activated hopping on a corru-
gated (but macroscopically flat) energy
landscape U(�). We can eliminate the
position dependence of the coefficient of
the noise by multiplying both sides of the
equation with �
 � �T0/T(�), where T0
is an arbitrary reference temperature; i.e.,
we make the transformation {T, U, �} 3
{
T, 
U, �
�} (14). The resulting equa-
tion describes simple equilibrium isother-
mal Brownian motion on a rescaled
energy surface. The effects of the energy
dissipation (thermodynamic disequilib-
rium) show up only in the transformation
that maps the system onto the new coor-
dinates. Because 	(t) can be well modeled
as Gaussian noise [arising from the �1021

collisions between the particle or DNA
molecule with water molecules each sec-
ond (15)], the probability for a given

sequence of Brownian kicks in a time in-
terval �t is (16)

P�	�t�	 � exp��
1
2 �

0

�t

	2� t�dt�
� exp��

1
2 �

0

�t 
�R�̇ � U��2

2RkBT0
dt� .

[4]

The argument of the second exponent is
the thermodynamic action proposed by
Onsager and Machlup (16) in their least-
dissipation theory for stochastic processes.

For every trajectory that takes a parti-
cle from the arbitrary position �i at t � 0
to �j at t � �t, there is a reverse trajec-
tory with opposite sign velocity at every
instant that takes a particle from �j at t �
0 to �i at t � �t. Consequently, by divid-
ing the second integral in the above
equation by itself but with the sign of �̇
reversed, we obtain the much simpler gen-
eralized fluctuation–dissipation relation
(12),

css�� j�

c ss�� i�
�

P�� j, � t �� i, 0�

P�� i, � t �� j, 0�

� exp��
1

kBT0
�

�i

�j

Xd�� ,

[5]

where X � �
U� is the rescaled local
force acting on the particle. We used the
steady-state condition css(�i) P(�j, �t��i,
0) � css(�j)P(�i, �t��j, 0), where P(�j,
�t��i, 0) is the conditional probability den-
sity that a particle is at �j at �t, given that
it started at �i at t � 0. For a simple po-
tential [e.g., U(�)� �4��2 as treated in
Landauer’s blowtorch model (17) for ther-
mally induced directed transport] and for
small linear thermal gradient, the integral
is an approximately linear function of �T.
The equation is valid, however, even when
the integral is a strongly nonlinear func-
tion of �T.

There is some confusion of the use of
the term ‘‘linear’’ in the literature. Clearly,
the Onsager/Machlup theory, based on
the relation R�̇ � X, is a linear theory
and requires ‘‘that the fluxes depend lin-
early on the forces that ‘cause’ them’’

(16). Because of strong viscous damping
and very rapid velocity relaxation, this
condition is met for the mechanical mo-
tion of almost any micro- or nanoscale
system in water, even when under the in-
fluence of strong external forces or large
thermal gradients. Indeed, it is almost
impossible to imagine an experimentally
attainable thermal gradient where this
would not be the case for a particle in
solution. A second use of the term linear
appears in the context of Linear Response
Theory, which focuses on the response of
a system to some external perturbation. It
is relatively easy to apply thermal gradi-
ents large enough that the net effective
force and hence the velocity are not a
linear function of the thermal gradient.
Even so, the generalized fluctuation–dissi-
pation relation holds (12).

In general, for particles smaller than a
few micrometers in solution, the viscous
drag force is equal to and opposite the
mechanical and thermodiffusive forces,
and there is no acceleration (18). This
force balance holds even if the source-
driving motion is far from equilibrium
with the bath in which the particle moves.
Thus, the particle is itself in mechanical
equilibrium (13) and undergoes equilib-
rium fluctuations, as described in a suit-
able coordinate system. The particle
simply serves as a ‘‘conduit’’ for energy to
flow from the source of the mechanical
force or thermal gradient to the bath. A
molecular motor can be viewed as a mole-
cule or nanoscale device that couples two
external sources to a heat bath in such
a way that the flow of energy from the
stronger source can rectify the occasional
reversal of the flow of energy between the
bath and the weaker source, allowing en-
ergy to be pumped from the bath to do
work on the weaker source. The energy
for the reversal is provided by the stron-
ger source, but the mechanism takes ad-
vantage of the omnipresent fluctuations in
the energy flows due to thermal or other
sources of noise. These fluctuation-driven
molecular motors (19) share far more in
common with the coupled transport pro-
cesses (1) discussed by Duhr and Braun
(2) than they do with the macroscopic
motors and pumps. It seems likely that
further investigation to resolve the many
remaining questions concerning the mo-
lecular mechanism of the Soret effect will
lead to further insight into a general un-
derstanding of coupled transport pro-
cesses, with far-reaching consequences in
many fields.
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