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Thermodiffusion of Charged Colloids: Single-Particle Diffusion
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An expression for the single-particle thermal diffusion coefficient of a charged colloidal sphere is derived on the
basis of force balance on the Brownian time scale in combination with thermodynamics. It is shown that the single-
particle thermal diffusion coefficient is related to the temperature dependence of the reversible work necessary to build
the colloidal particle, including the core, the solvation layer, and the electrical double layer. From this general expression,
an explicit expression for the contribution of the electrical double layer to the single-particle thermal diffusion coefficient
is derived in terms of the surface charge density of the colloidal sphere, the electrostatic screening length, and its core
radius, to within the Debye-Hikel approximation. This result is shown to explain experimental data, for both thin
and thick double layers. In addition, a comparison with other theories is made.

1. Introduction which includes the solvation layer and electrical the double layer.
As shown in the present paper, however, this is not correct. It
will be shown that, instead of the derivative of the chemical
potential, the temperature derivative of the reversible work to
create such a complexed colloidal particle determines the single-
particle diffusion coefficient.

When gradients in concentration and temperature and devia-
nt{'ons from their mean values are small, the phenomenological
equation of motion for the number densityf a given species
that incorporates temperature-induced diffusion is of the form

Spherical colloids are excellent model systems to gain
understanding concerning the microscopic mechanism that
underlies collective diffusion and thermal diffusion. The coupling
of atemperature gradient to diffusion in a multicomponent mixture
was observed for the first time 150 years ago in salt solutions
by Lugwig! Up to a decade ago, thermal diffusion of simple
molecular systems has been extensively studied. Due to the rece
development of new experimental techniques to probe thermal
diffusion, macromolecular systems have become of increasing
interest. Inrecentyears, several experimérftéfand theoretical 1° 9 ) )
studies are devoted to the determination of the thermal diffusion 5P 0 =DVp(r, 1) + DyVI(r, 1) (1)
coefficientDt of macromolecules, micelles, and colloids. Here,
one should differentiate between highly diluted and concentratedwhere D is the collective diffusion coefficient anB+ is the
solutions. For very dilute systems, the thermal diffusive behavior thermal diffusion coefficient. The thermal diffusion coefficient
is dominated by single-particle properties, related to the core describes the coupling of a spatially varying temperafiret)
material, the electric double layer, and the solvation layer. For and the density of a given species. Equation 1 will be derived
concentrated systems, in addition to single-particle properties, in the present paper from thermodynamic arguments and force
interactions between the macromolecules need to be consideredbalance on the Brownian time scale, leading to explicit expressions
In the present paper, the contribution of the electric double layer for the thermal diffusion coefficierDt. These expressions are
to the single-particle thermal diffusion coefficient will be explicitly evaluated as far as the electrical double layer
considered. contributions are concerned in terms of charge, core radius, and

In two earlier papers of one of the present autfdfsthe Debye screening length. The theoretical prediction will be
contribution to the thermal diffusion coefficient of colloids that compared to experiments on a micellar systemmd a colloidal
arises from colloie-colloid interactions was discussed. In the system of polystyrene particles of varying sizéddoreover,
present paper, we consider very dilute suspensions where theseur analysis will be compared to other recent theories on charged
interactions do not contribute. There is one section in ref 9, colloids/ 813
however, where the single-particle thermal diffusion coefficient
is claimed to vary proportionally to the temperature derivative 2. Basic Idea for the Calculation ofD+ for Colloids

of the chemical potential of the “complexed colloidal particle”,  The starting point for the explicit calculation of the thermal
— — diffusion coefficient of colloids is the continuity equation for the
* E-mail: j.k.g.dhont@fz-juelich.de. number density(r, t) of colloidal spheres
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sphere. The velocity of a colloidal particle will be calculated on the number of Alions is denoted as;~ andN,~, and the number
the basis of thermodynamic arguments. This can be done on theof solvent molecules in boxes 1 and 2 is denotetipandN3,
diffusive time scale (typically on the order of a few nanoseconds), respectively. We have to calculate the reversible wonkev
where inertial forces on colloidal spheres can be neglected. Thenecessary to displace, in a quasi-static mandif, colloidal
noninertial forces thus add up to zero, which is known as “force spheres from box 1 to box 2. That is, an external force, that is
balance™#5 There are generally two noninertial forces to be infinitesimally less in amplitude than the foree, acts on the
distinguished: the forc& that arises from direct, nonhydro-  colloidal spheres, which are then quasi-statically transported in
dynamic interactions between colloidal particles and its sur- the direction in which they will diffuse if no external force would
roundings in a concentration and temperature gradient and thebe present. The reversible work

force F" due to hydrodynamic friction of the colloidal sphere

with the solvent. Hydrodynamic interactions between colloidal OW*®' = SW*®ION° (7)
spheres need not be considered here for single-particle diffusion . o )

(for interacting colloids, these hydrodynamic interaction con- Per moved colloidal particle is related to the fofeewhich we
tributions can be included on the basis of the Smoluchowski Se€t out to calculate as

equation as discussed in ref 10). The hydrodynamic force is then oy

proportional the velocity of the sphere OW®' = —L-F (8)

Fh(r f) = —pv(r, 1) ) wherelL is the distance between the centers of box 2 and box
A 1, which is the distance over which the colloidal particles are

wherey is the friction coefficient. In the case of a charged colloidal  displaced when moved from box 1 to box 2. Hence
particle, the electrolyte contribution to the friction coefficient is ov oy
at most on the order of a few percent. Electrolyte friction will = VW)= — oW oW

- Electrolyte friction F ) Vo+ S VI (9)
therefore be neglected, so that the friction coefficient is simply op aT
equal to the friction coefficient of the core with the solvent

Substitution into eqs 6 and 2 and comparing to eq 1 leads to

y = 6mR (4) AW
D=D
wherer is the shear viscosity of the solvent aRdhe radius ofe ap
of the colloidal spheres. Force balance implies that W
_ d
0=F(. 0+ F'(r. 0 ©) Dr=Dofe =57 (10)
From eqs 5 and 3, it follows that whereDg = kgT/y is the Einstein diffusion coefficient (witkg
Boltzmann’s constant). In the derivation of these expressions,
v(r, ) =F(r, tly (6) only the leading order terms in deviations from mean values of

the density and temperature are accounted for. TermgVigg
and (VT)-(Vp) are thus neglected.

It should be noted that the definition of the thermal diffusion
coefficient used in this paper complies with the equation of motion
(eq 1). Different definitions are sometimes used, where, for
example D+ in eq 1 is replaced byDt, orc(1 — c)Dr in case

An equation of motion for the colloid density is thus obtained
from egs 2 and 6 once an expressionfds found. This force

will be obtained from thermodynamics and will turn out to be
equal to a linear combination of gradients in colloid density and
temperature, rendering eq 2 of the form in eq 1. This then leads

Loa(ratTgreessmns for the thermal diffusion coefficient of a colloidal of binary mixtures (witlc the molar fraction of one of the species).

The force can be obtained from thermodynamics as follows. . Athermodynamic approach relies on the assumption that there

Like in ref 9, the system under consideration is divided into is local equilibrium, Wh'Ch.'S the case wher_1 gradients in
subsystems, which will be referred to hereafter as “boxes”. Thesetemperature and concentration are small. Nonlinear eff_ects for
boxes are assumed to be large enough to allow them to be treatecllarge temperature gradients have been observed experimentally
as thermodynamic systems on their own. Each box can be regarde('JP ref 16.

ininternal equilibrium when gradients in density and temperature 3. Force on a Colloidal Sphere:

are small enough to ensure a very slow evolution of the global Heuristic Considerations

colloid concentration and a slow heat transport. Gradients are . ) . .
supposed to be sufficiently small so that the largest internal  Before giving a more systematic derivation of an explicit
relaxation time of a box is small compared to mass and heat expressmn.for the reversible work, the intuitive approach given
transport times. Consider two neighboring boxes “1” and “2”. Delow readily leads to the correct result. _ _
Their volumes are equal @, while the prescribed and fixed Imagine the following pathway to move a colloidal particle

temperature in box 1 is equal Teand in box 2 equal t@ + OT. from box 1 to pox 2. First, a fprce is appligd which .reversibly
There areNi colloidal particles in box 1 andlg in box 2. For breaks off the interface. That is, the solvation layer is forced to

simplicity, we shall consider the case where only ibns attain the bulk solvent structure, and ions are attached to the

dissociaté from the surfaces of colloids and where an acid HA surface of a colloidal sphere to render it uncharged. The reversible
R . Ny

is added to the solution, which completely dissociates into H WOrk to do this is minus the reversible wowk(T) involved

and A-. The final expression for the thermal diffusion coefficient 1N building up the interface at temperatufe Then, the core

is also valid for other types of ions. The number of ldns in

(16) Duhr, S.; Braun, DPhys. Re. Lett. 2006 96, 168301.

a box is denoted as;* for box 1 andN,* for box 2. Likewise, (17) In a comment in ref 9 section VI, this expression for the single-particle
thermal diffusion coefficient was cited, except that insteasf the chemical
(14) Batchelor, G. KJ. Fluid Mech.1976 74, 1. potential;t;*s for the “complexed colloidal sphere” appears. This is not correct:
(15) Dhont, J. K. G.An introduction to dynamics of colloid<Elsevier: only that part of the chemical potential related to reversible work appears in the

Amsterdam, 1996. expression for the single-particle thermal diffusion coefficient.
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material of the colloidal particle is reversibly heated to establish
a raise in temperature ofT, which requires no work as far as

the interface is concerned. The core is then moved to box 2,
which requires no work as far as the interface is concerned,

because the interface is simply nonexistent during this displace-

Dhont et al.

SOT cancel at the end. Hence
oW’ = 6F (+ entropic contributions) (13)

The Helmholtz free energy of each of the two boxes is a function

ment. Then, the solvation layer is restructured and the electrical Of the number of solvent molecules, ions, and colloidal particles

double layer is recharged, which requires work equaMd(T

+ 6T). On moving the colloid from box 1 to box 2, reversible
work is done against gradients in the osmotic pres$liré&or
noninteracting colloiddI = pkgT, so that the accompanied body
forceisequal te-VII = —kg[TVp + pVT]. The work per colloidal
particle isthus equal tokg[TV In{ p} + VT]. Thisworkincludes
the displacement of an equal volume of electrolyte solution in
opposite direction. Hence

W)

aT

F VT (11)

—@mer{@+

This leads to the following expressions for the diffusion
coefficients’

Do

W)

T (12)

Dr= DO[B +pp
T
The first term within the square brackets s the “ideal gas”
contribution, and the second term is the contribution due to the
presence of the double layer.
Besides the reversible work involving the solvation layer and

the double layer, there are two additional types of internal degrees

of freedom which require work (i) to build up the structured
solid colloidal material in contact with electrolyte solution in the
immediate vicinity of the surface of the colloidal sphere and (ii)
work to build up the bulk solid core material of the colloidal
particle including the accompanied replacement of solvent by
the solid colloidal material. These two types of degrees of freedom
can be incorporated in the reversible work and can simply be
added in eq 12. The bulk contribution (ii) has been discussed in
detail in ref 18.

The result (eq 12) will be derived in the following section in
a more systematic way.

4. Force on a Colloidal Sphere: Thermodynamics

The following is an extension of the discussion in ref 10,

where now the solvent molecules and ions are explicitly accounted ™, oN,

for.

The reversible worldw™' necessary to achieve the displace-
ment of colloidal spheres from box 1 to box 2 is equadFo+
S10T1 + S0T,, wheredF is the accompanied change in Helmholtz
free energy. The entrof® is the entropy carried by the material
that is taken from box 2 to box 1 on moving the colloids from
box 1 to box 2, andT; = —0T is the accompanied change of
temperature of that material. Similarlg; is the entropy carried
by the material moved from box 1 to box 2, add, = OT is

in the box, its volume, and the temperature. Bbgs and éNJ-i
denote the change of the number of solvent molecules and ions
(H™and A7) in boxj associated with an exchangex®{° colloidal
particles. The reversible work necessary for the above-described
process is then equal to

OW®' = OF = F(NJ — ON°, N7 — ON3, N, " — ON, ", N, ™ —
ON, -, V, T) + F(NS + 0N, N5 + ON5, N, -+ ON, ™, N, ™ +
ON, , V, T+ 0T) — F(NS, N5, N, ", N, 7, V, T) —

F(NS, N5, N, N, ~, V, T+ 0T) (14)

Expansion of the free energies with respecdid, SN°, and
6Nji, usingaFlaNjC = ucj, With ucj the chemical potential of the
colloidal particles in bo, and similarly for the solvent molecules
and the ions, gives

oW’ = {ﬂc,z - /’tc,l}éNc + /"s,zéN; - ;us,léNi + zu;éN; +
430N, — g ONy — g ON; (15)

The chemical potentials appearing in eq 15 are interpreted as
follows. The chemical potential of a colloidal sphere is understood
to be the difference in free energy of an uncharged colloid in its
“dry state” and in the dissolved state in the suspension. It contains
therefore two contributions: (i) the free energy that is released
on spontaneous formation of the solvation layer and the double
layer on transferring a “dry” colloidal sphere to the suspension
and (ii) the gainin entropy of a colloidal sphere due to its freedom
to take any position in the suspension. In particular, the gain in
entropy of ions that are dissociated from the surface of a colloidal
sphereisincluded in the chemical potential of a colloid. Similarly,
the chemical potential of an added salt molecule is defined as
the free energy change on dissolving a “dry” salt molecule. The
separate chemical potentialg™ and x;~ of HT and A~ are
therefore notindependent and will only occur in the combination
Usaj = wt + 15~ , which will be referred to as “the chemical
potential of a salt molecule”.

With the above definitions of chemical potentials, the changes
(SNJ-i are changes solely due to transport of H A~ pairs, that
is, of salt molecules. It follows from electroneutrality '[hiv.wj+
, which will be denoted simply aéNfa". This is the
change of the number of salt molecules in hoklence, from
eq 15

oW = {ﬂc,z - r“c,:l}aNC + ﬂs,ZéNZ - /"s,léNi +
/’tsal'(,zaNgalt - :us,alt,l(5 Nialt (16)
The number of solvent molecules and the number of ion pairs

H* — A~ thatis transported is connected to the number of colloidal
particles that are moved from box 1 to box 2. On moving a

the temperature change of that material. These entropic termscolloidal particle from box 1 to box 2, an equal volume of

cancel against similar contributions in the Gibtiduhem relation
that will be used later in our analysis (as is shown in the Appendix).

electrolyte solution will be moved from box 2 to box 1, when
thermal expansion of colloidal material and solventis neglected.

For brevity, we shall therefore not denote these entropic terms The total number of bulk solvent molecules within the volume

in equations here after. All entropic contributions of the form

(18) Wirger, A. Europhys. Lett2006 74, 658-664.

of a colloidal sphere in bokis equal tov] pg;ON, whereuy is
the volume occupied by the core of a single colloidal sphere and
pgj is the bulk concentration of solvent in bgxthat is, the
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concentration of solvent outside the solvation layer. The molar quantities. The corresponding GibbBuhem relation for dif-
volume »{ of the colloids is taken independent of the colloid ferences between the reservoirs of boxes 2 and 1 is
concentration and temperature, as indicated by the superscript

0. The molar volume? is to a good approximation simply equal 0= Vop, — Noops — Ni*"Ougy (22)

to the volume of a colloidal sphere, where the relatively small

differences due to thermal expansion of the colloidal material Where asub-or superscript“r” of “reservoir”is added to indicate
are neglected. There is an excess number of moleEtigihin that these quantities relate to the osmotic reservoir. This index
the solvation layer that is attached to each colloidal sphere. Theis missing onus andusay, since these are equal in the suspension
free energy connected to the formation of this solvation layer is and the osmotic reservoir. Since the osmotic pressure is defined
already incorporated in the chemical potential of a colloidal as

particle, as discussed above. The changes of the number of solvent

moIecuIeséNj5 in eq 16 do therefore not include the excess H=p-p

amounts of solvent molecules within the solvation layers. Hence .
it follows from eqgs 21 and 22 that

(23)

ON = —02 p2,ON° (17) 1 1 1

(3/1,: ==oll + _(ps,r - ps)dus + _(psalt,r - psalt)é/“‘salt

This equation allows one to expremjsin eq 16interms odNC. p p p (24)

A similar relation can be derived for the change of the number N

of ions. Hence, just as for the solvent molecules we have wherep = NV and psait = N5V are the number densities of
colloids and salt molecules, respectively. Substituting this

5sta"= — nggam(sNC (18) expression fodu. into eq 19 leads to

wherepgaltj (= poi) is the number concentration of ion pairs ( SWEYSNE = 1 oI — Ugé[pgus] — Ugé[pgallusaIJ +
salt molecules) outside the double layer. p

Substitution of egs 17 and 18 into eq 16 gives %(ps,r_ PO+ %(psalt,r_ Pea)Ottsar (25)

ev Cc __ Oor 0 0
OWEION® = o = o U°[ps’2(;s'2 ps*ﬂus'lo-’_ The number density. of solvent molecules outside the
Psalt Hsaii2 ™ Psaittsaid (19) solvation layer is different from the “thermodynamic” density
) _ ) ps = N¥V in the suspension. There is an excess number of
or, in obvious notation moleculess within the solvation layer that is attached to each
Ve i 0er 0 0er 0 colloidal sphere. This excess amount of solvent molecules in the
OWETON® = Ops — veOlpsutd — veOlpsattsad  (20) solvation layer of a colloidal sphere is defined as

Here, thed’s refer to the differences between box 2 and box 1. s _ _

The expression (eq 20) includes both single-particle and = J;>Rdr[p5(r) ’Og] (26)
interaction contributions. In order to separate these two contribu-
tions, the chemical potential of the solvent molecules and the
:’;j“\grllt3$ _trhheatsi;s\;pveenssrllgﬂ ir?wr:gi?liﬁerz]:gh tt:lorgl:g Eeﬁz Oc;snr?oc;it(l:c surche is defined h.ere.such that. the adsorbed amount of solid
equilibrium with a reservoir of electrolyte solution with the colloidal core mate_nal is zero. Since the totalonl_Jmldpg of
corresponding temperature, where the membrane is permeabl§C!vent molecules is equal tT= + (V — Nevg)pg, it follows
for solvent and ions but not for colloids. The physics behind the that
introduction of such a reservoir is as follows. The dynamics of s 0
the small species (the solvent molecules and the ions) are much ps= pI"+ (1 = @)pg (27)
faster compared to the colloidal particles. These small species 0 . ] .
are therefore always in equilibrium with the field imposed by Whereg = vcp is the volume fraction of colloids.
the instantaneous configuration of colloidal particles, provided — Due to electroneutrality of the colloidal surface plus its double
that each box is itself in internal equilibrium. In particular, the layer, the excess amount of Hons is equal to-Z, whereZ is
small species inside the solvation layer and the double layer arethe valence of a colloidal sphere (including the sign of the charge).
in equilibrium with the small species outside these layers. The In the present case, where ibns dissociate from the surface,
solvent molecules and ions outside the solvation layer and doubleZ is & negative number. The number of adsorbed salt molecules
layer are now formally regarded as an osmotic reservoir. The I*2"in a single double layer is thus equal to
Gibbs—-Duhem relation for the suspension reads (entropic <alt B N
contributions are again not denoted here, since these cancel against r~=r =1r+z (28)
the entropic contributions in eq 13, as shown in the Appendix)

wherep4(r) is the local solvent molecule concentration at a radial
distance from the center of a colloidal sphere. The Gibbs dividing

where

0= Vop — Nu, — N°0u, — N*¥ou (21)
‘ : = r= [ drp.(r) - ol (29)

wherep is the mechanical pressure within the suspension with

volumeV. Note that, as for eq 19, the differenaisefer to the are the excess amounts of ldr A~ ions in the double layer.

differences between box 2 and box 1. Since differences betweenHere p(r)is the local number concentration of leind A~ around

the two boxes are (infinitesimally) small, the numbdf of a colloidal sphere, which can be calculated within the scope of

colloidal particles in eq 21 is “the average” of the number of the Debye-Hiickel theory for small surface potentials. Similarly

particles in the two boxes, and similarly for the other extensive as for solvent molecules, the thermodynamic concentration of
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salt is equal to

rsalt + (1 ¢)psalt (30)

Psait =
wherepl,, = pJ is the concentration of salt molecules outside
the double layer.

The chemical potential of solvent molecules away from a
colloidal particle, outside the solvation layer, is equal to that of
the osmotic reservoir. The concentratipf of such solvent
molecules is therefore equal to the concentragigrof solvent
molecules in the reservoir for incompressible solvents. With the
neglect of the small contribution of thermal expansion of bulk
material (so thaﬁpg = 0), using eq 27 gives

ps)élus = _Fsalus (31)

1
~v0logud + oo,

Similarly, the concentratiopl,,outside the double layer is equal
to the salt concentratiopsairin the osmotic reservoir, so that
it follows from eq 30 that

_rsalté/f‘salt
(32)

1
v gé[p(s)alﬂsala + ;(psalt r psalr)dusalt

Substitution of egs 31 and 32 into eq 25 gives

SWEYONC = % OTT — Tou, — Ty, (33)
This result can be written in an alternative form with the use of
the Gibbs adsorption equation

—I%0u, — Tu = 4Ry + SOT (34)
whereR is the radius of a colloidal spherg,is the surface
tension, and; is the entropy of a single interface between the
colloidal material and the electrolyte solution, including the

solvation layer and double layer. As before, the location of the

Dhont et al.
following expressions for the diffusion coefficients are then found

D =D,

W ()
D, = Do’p + B ] (37)
which reproduces eq 12.

The interaction contributions to the osmotic prestftshould
be added to the above results for concentrated colloids.

As mentioned before, what has been neglected are the degrees
of freedom associated with the bulk material of the core of a
colloidal particle. The reversible work that is required to build
up the solid bulk core material of a colloidal sphere (and the
accompanied displacement of solvent) can simply be added to
the work in eq 37.

5. Double-Layer Free Energy and Reversible Work

In order to compare the prediction (eqs 12 and 37) for the
thermal diffusion coefficient to experiments, the reversible work
W involved in creating an interface must be expressed in terms
of, for example, salt concentration and the radius of the colloidal
sphere. In the present section, only the double-layer contribution
W to the interface work is considered.

It will be assumed that the dielectric constant within the core
of a colloidal sphere is constant and there are no charges inside
the core of the colloidal particle, that is, all charges are assumed
to be located on its surface.

When the dielectric constant within the core of the colloidal
particle is homogeneous, independent of position, the surface
chargeo is proportional to the radial derivative of the electric
potential® at the surface of the colloidal particle, that is, at the
radial distance = R, with R the radius of the colloidal sphere,
0= —¢(dd(r)/dr),=g, with € the dielectric constant of the solvent.
For moderate electric surface potentials, the electric potehtial
within the double layer is equal 1

Gibbs dividing surface is chosen such that the amount of adsorbed

solid colloidal material vanishes. The surface tensios well-
defined for both thin and thick double layers. SinceRdy is
equal to the free energy of the interface, it follows that
_rséﬂs _ rsaltélusaltz 6\Nirev (35)
where W' is the reversible work involved in building up a
single |nterface including the solvation layer and the electrical
double layer. The reversible wolk®' = ow™/oN°¢ necessary
to move a single colloidal sphere (see eq 8) thus follows from
egs 33 and 35 as

OW =L 51T + owe (36)
P i

Thefirstterm on the right-hand side describes the energy necessary

to displace a colloidal particle against gradients in the osmotic

pressure. The second term is related to the work that is involved

in changing the temperature of a solvation layer and a double

layer and of the immediate surface of the colloidal sphere.
For very dilute suspensions, where colloidal spheres do not

interact with each othefl = pksT. From eqgs 10 and 36, the

(19) Verwey, E. J. W.; Overbeek, J. Th. Theory of the stability of lyophobic
colloids Dover publications: New York, 1999.

exp{—«x(r — R
r'R
where®s = ®(r = R) is the surface potential and
(39)

is the reciprocal Debye Iength wig¥ 0the elementary charge,
ks Boltzmann'’s constantp the number density of ions of
specieg outside the double layer, which cargyelementary
charges.

The surface potential can be expressed in terms of the total
chargeQ = 47R%0 on a colloidal sphere from the relation between
the charge density and the radial derivative of the potential at
the colloidal surface as mentioned above

Q 1
4reR 1+ kR

s (40)
For some colloidal particles (like carboxyl-modified polystyrene),
the surface groups are fully dissociated, whereas for other systems
(like bare silica), the surface groups are only partially dissociated,
depending on the pH.

The free energy of a colloidal particle is, by definition, the
change in free energy on immersion of a colloid in its “dry state”
into the dispersion. This free energy is either the Helmholtz free
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energy under constant volume or the Gibbs free energy under ST[1/K] T T '
constant pressure. Before immersion, the colloidal particle is not

solvated and surface groups are not dissociated. On immersion, 20 )
the colloidal particle will gain entropy since it is free to move

through the dispersion, the surface of the particle will be solvated, 2R=1.1m

and ions will be released from the surface while building up the

double layer. The free energy to build up the double layer consists

of two parts: (i) the free energy that it takes to create the ion 10
cloud around the colloid and to charge its surface, which can be

calculated via a “charging process”; and (ii) the gain in entropy

on release of ions from the surface of the colloidal particle on 05
charging the surface. These two contributions have been discussed 02
in detail in chapter 3 of the classic book of Verwey and 00 5 10 1'5
Overbeek?® The charging process costs an energy in the form i
of reversible workW" equal to "DH

Figure 1. The Soret coefficient at room temperatire= 298 K
ev_ 1 as a function of the DebyeHiickel screening lengthoy = «~* for
d — 5 QD (41) carboxyl-modified polystyrene spheres with a surface charge of
= 4500€e/lum?, or, equivalently, kléa/e = 0.029. The radii of the

: ) solid lines are the predictions from eq 45 witQ/dT = 0, and the
surlfape IS eﬁu‘%hto;Qqus' _ghle doytl)le !aytre]r free er;ergyw data points are for polystyrene sphetésthe only adjustable
(relative to the “dry” colloidal particle) is thus equal to parameter for each curve is the offset for zero Debye length, which

is related to the solvation layer contribution and the contribution
F = 1 Q@ (42) associated with the degrees of freedom within the bulk solid core
il 278 material of a colloidal sphere.

The free energy of the double layer must be negative, since In order to compare with experiments, where the dependence
otherwise the double layer would be unstable: the free energyOf the Soret coefficient on the Debye lendif, = «~* and the
would be lowered by decharging the colloidal particle if the free fadius R of the colloidal spheres is probed, eq 44 is more
energy were positive. The reversible work is thus equal but conveniently written as
opposite in sign to the free energy, as a result of the entropic 5 \2 3
contribution due to the release of ions from the colloid surface. Tg;ﬂ) =1+ 1(4ﬂ| BO) kR (R)

4

Note that, according to eq 42, the contributjgnof the double e /@a+ ICR)Z\E
layer to the interfacial tension is equal to 2 \2 3
dine(, , 2 4nlgo|” 1 (R dinQ
1 c 2 T amtt Rl Ve ) TR dinT @)
le = — 8_77;_R2 Q(I)s = - ﬁ(l + I(R)CI)s (43) B

wherelg = €?/4me is the Bjerrum length (which is 0.71 nm for

within the Debye-Hiickel approximation, where in the second ~Water at room temperature). This result is valid for arbitrary
line eq 40 has been used. For thin double layers, this reduces td?€bye screening lengths. Note that the dimensionless combination

ya = —ex®Z2, which is the expression that is used in, for 47l2oleis the number of unit charges on a fictitious sphere with
examp|e, refs 11 and 20 (|n Gaussian units). radiusIB with the same Charge density as the colloids. As will
be seen in section 7, where a comparison with experiments is
6. Explicit Expression for the Soret Coefficient made, the values that this dimensionless group takes vary from

about 0.01 for polystyrene spheres to 1 for SDS micelles. The
temperature dependence of the dielectric constant cannot be
neglected, since for water at room temperature, ddrin T =

Explicit expressions for the double-layer contribution to the
single-particle diffusion coefficient are obtained by substitution
of eqs 39-41 into eq 37. Again neglecting small contributions

from thermal expansion, it is found that the double-layer —134.
I L aeddl) e i . . . .
contribution to the Soret coefficieid”’ = D1/pD is given by 7. Comparison with Experiments and Other Theories
ay 1 kR [ dine( 2 In this section, we shall compare the theoretical predictions
TSV =1+ ZﬂQq’s 1+ KRll “din -|-\1 + K_R) + in eq 45 with experiments on two different types of systems:
dinQ carboxyl-modified polystyrene spheres of various radii but equal

BQD dinT (44) charge densiff and (ii) a SDS micellar solutioh.In particular,
the salt concentration dependence of the Soret coefficient will

The “ideal gas” contribution (the first term on the right-hand be discussed as well as its colloid size dependence. The
side in eq 44) stems from work against the osmotic pressure, Polystyrene spheres are always large compared to the Debye
where additional terms should be accounted for when intercol- length, while for the micellar system, the Debye length is
loidal interactions become important at higher concentrations comparable to or larger than the size of the micelles. The table
(see refs 9 and 10). The lastterm in this equation is only important 9ives the parameters for the two systems that are needed for a
when the total charge on the colloidal spheres is temperature-duantitative comparison.

dependent. Thisis generally the case for colloidal particles where A comparison with experiments on colloidal polystyrene
the surface groups are Only part|a||y dissociated. Sphel’es with identical surface ChemIStI’y but d|ffer|ng radii is

given in Figure 1, where data are taken from ref 12. Here, the
(20) Rickenstein, EJ. Colloid Interface Sci1981, 83, 77—81. Soret coefficientis plotted against the Debytélickel screening
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Table 1. System Parameters 0.10 v : :
4ndZol dind g SR ERERteEll T
system radius [nm o e dinT [nm ]
y [nm] [ S 11K
polystyrene 550/250/100 45@um? 0.029 -1.34 0.71

SDS micelles 2.7 0.218nn? 1.38 —1.34 0.71
lengthApy = 1. The surface charge density of the spheres as 0.05}
measured with electrophoresis is equabte 4500e/um?, and

hence, &Iéo/e = 0.029. Since the surface groups for these
particles are fully dissociated, the charge is independent of

Beds=1 =312

temperature, that is@dT = 0. The Bjerrum length for water l l

at room temperature is 0.71 nm and defd In T = —1.34. 0 ) . )
The only adjustable parameter in a comparison of experimental '0%.0 0 0 156

values for the Soret coefficient and eq 45 is the offset for zero Aop [l

Debye Iength,whic_h isrelated to the contribut_ion of the solvation Figure 2. The Soret coefficient at room temperatdfe= 298 K
layer to the reversible world/*' to create an interface and the  as a function of the DebyeHiickel screening lengthoy = « ~ for
contribution associated with the degrees of freedom within the SDS micelles with a surface charge of= 0.218 e/nn?, or,

bulk solid core material of the colloidal sphere. The solid curves equivalently, 4l30/e = 1.38. The radii of the spheres are 2.7 nm.
in Figure 1 correspond to eq 45 witlfiT = 0. As can be seen, The s_olid lines are the predictions from eq 45 wit/dT = 0. The

the agreement with the experiments is quite reasonable, both foréxperimental data are taken fromref 11. As before, the only adjustable

-~ : e parameter is the offset at zero Debye length. The verticle arrows
the salt-concentration dependence of the Soret coefficient andirl dicate the Debye lengths whefed. is 1 and%,, beyond which

for the dependence on the radii of the colloids. the Debye-Hiickel approach becomes invalid.
The variation of the offset in Figure 1 with the radius of the
colloidal spheres indicates that the solvation layer is the main
additional contribution to the single-particle Soret coefficient where the “ideal-gas contribution” has been added. This
and that the contribution from colloidal bulk-material is much expression is precisely the result in eq 45 in the limit of thin
less important. This is analyzed in more detail in ref 12. double layers, whereR> 1. Note that the polystyrene particles
Thermodiffusion of SDS micellar particles has been explored are very large in comparison to the double-layer thickness. The
in ref 11. These particle are much smaller than the polystyrene experimental results in Figure 1 can therefore also be described
spheres discussed above. For this system, the particle radius i®n the basis of the capacitor model.
R= 2.7 nm and the charge density is 0.248n7, and hence, In ref 20, an expression for the thermophoretic velocity is
4mlzole = 1.3821 This system thus covers an entirely different derived for thin double layers on the basis of a Navigtokes
part of parameter space as compared to the above-mentione@quation together with thermodynamic relations. By combining
polystyrene spheres. For the SDS micelles, it is reasonable toeq 27 from ref 20 and eq 43 for the double-layer contribution
assume that the surface groups are dissociated to an extent tha}, the surface tension withR > 1, it is found that
allows the neglect of the temperature dependence of the charge
ineq 45. Care should be taken when comparing these experiments 420\2
with the prediction in eq 45, since now, according to eq 40, the TS =1+ 3_77( B ) R (fromref 20)  (47)
dimensionless paramet@e®s can be large, which invalidates 4\ e |§K2
the Debye-Hiickel approach (fokpy = 0.63 nmpeds=1, and
for Apy = 1.07 nm, we havge®s = 1.5). The above theory is
thus certainly not applicable whepy is larger than about 1 nm.
For such small Debye lengths, the continuum Pois®witzmann
approach might be questionable. Nontheless, we compare th
prediction in eq 45 with the experimental data in Figure 2. As
can be seen, the salt concentration dependence of the Sor
coefficient is correctly predicted for Debye lengths where the
Debye-Huickel theory is valid. The theory and experimental
data begin to deviate from the experimental data at a Debye
length above whicfie®sbecomes larger than unity, as expected.
As before, the offset is an adjustable parameter. In ref 11, it is ) X . . )
stated that, even for potentials such Bebsis much larger than the proposed theory in ref 11 with their SDS micellar data is
unity, the Debye Hiickel theory is still applicable when an ~ fortuitous.
“effective charge” is used. In the above comparison, we used the  Bringuier and Bourdofpropose an expression for the thermal
charge density as reported in ref 21 for this system for lower diffusion coefficient in terms of the temperature derivative of
potentials and refrained from using an “effective charge”. the total internal energy (see their eq 13), based on arguments
On the basis of a capacitor analogon with the electric-double- that are put forward by van Kampé.Disregarding the
layer/charged-colloid system, the following expression for the temperature dependence of the total charge, which amounts to
Soret coefficient may be obtain€d taking the limitE — o« in their eq 17, wheré is the energy

related to the thermally activated desorption of ions from the
1 Mléa 2R2 din{e surface of the colloids, and using their expression 184dn
d) —
TS =1+= “A1————1 (fromref12)
4\ e K|g dIn{T}

This expression is used in ref 11 to interpret the experimental

data on SDS micelles discussed above. It predicts that the Soret

coefficientis a quadratic function of the Debye screening length.
®rhis result does not agree with our prediction in eq 45, not for
etthin and also not for extended double layers. The reasons for this
are (i) that it is not the free energy but only the reversible work
that determines the Soret coefficient and (ii) that eq 47 assumes
thin double layers, whereas the double layer thickness for the
micellar SDS system is actually comparable to or larger than the
size of the micelles. We therefore feel that the agreement between

(21) Bucci, S.; Fagotti, CLangmuir 1991, 7, 824.
(46) (22) van Kampen, N. GJ. Phys. Chem. Solidk988 49, 673-677.
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their eq 13 gives, for small colloid concentrations of (i) the solid bulk core material of the colloid and the associated
displacement of solvent, (ii) the structured layer of solid material
dy _ 1 Mléo 2 1 R in the immediate vicinity of the solvent, (iii) the solvation layer,
Tgr =1+ 2\ e m |_3 and (iv) the electrical double layer. The results in eq 49 reproduce
B

. the expression for the Soret coefficient given in ref 18 (see the
(from ref 7 withE — o andp — 0) (48) equation between their eqs 4 and 5), provided that the energy

Here, the temperature dependence of the total charge as well ad ' interpreted as the reversible work to build up a colloidal

the dielectric constant have been neglected. Within this ap- sphere.

proximation, the above expression is in accordance with our co\r,\e!r:ﬁ;;:r?zﬁ%ﬁgtggl\llr;r?tqa‘rlz qutgreer?r:]alc?r)t(gr?tTSI%n;foijIrl}c;?nail:;
expression (eq 45), for both thin and thick double layers. The ' P Y, Y y

correspondence between this single-particle result for charged!meralCtlonS between the colloidal spheres. Hydrodynamic

collic o rf 7 and our expresion (eq 45)for the Soret %1219 become sgrfcantt ghercolod conceniatons
coefficient is quite satisfactory in view of the fundamentally picapp

different approaches that have been employed. For interactingIn ref 19' . _— -

systems, however, there is a difference between the general resul,[t0 -[E: Se'lr:egclfri'gaggElbel:ﬂ;tr;bruit;og;locﬂ}Ztigrs\fi?ﬁﬁﬁ;ﬁ':rggaéed
in eq 13 of ref 7 and what is said in the present paper and resz.. kel imation. | yd' ¢ 44 and 45. Thi d'yt'

9 and 10. According to refs 9 and 10, interaction contributions . tckelapproximation, leading to €qs 4 an - 1S prediction
are related to temperature and density derivatives of the osmotic™> e to be in accordance with experiments on polystyrene
pressure rather than derivatives of the internal energy (for the spheres (thin double layers) and micelles (thick double layers),

isothermal collective diffusion coefficient, this is has long been W'th'.n th.e parameter range \{vhere the Debyitickel ap-
known). The internal enerdy due to intercolloidal interactions proximationis valid. There is a single adjustable parameter when

is introduced in ref 7 in a rather uncontrollable manner. If the iﬂ‘ﬂﬁg .Vr\]"tt:rgzp?g{nzr:gsg:s rztlr;is?rlwtCor?'iintsr?gglézvtintﬁg.
reversible work is used instead 0f and one recognizes that ISt ! ptatz y gth, whichi

reversible work is done (i) against gradients in the osmotic pressure'Maining contributions ;™ mentioned above.
which includes interaction contributions and (ii) to build up single-
particle colloidal complexes, the expression that would have
been obtained in ref 7 fully agrees with the results of the present
paper and refs 9 and 10.

Similar considerations as in ref 7 based on van Kampen’s
work?? lead to the correct expression for the Soret coefficient in Appendix: The Entropic Contributions
ref 18 (the expression between their eqs 4 and 5), provided that

the “energy’u is interpreted as the reversible work to build up It will be sh(_)v_vn here that the_entropic contribgtions foeq 13
a colloidal sphere. The contribution to the reversible work and those arising from the Gibb®uhem relations for the

associated with the bulk core material of a colloidal sphere and suspension and the osmotic reservoir cancel, provided that thermal

the displaced amount of solvent by the core has been extensivelepanS'on IS ne'glected. anq the solven'F IS |ncom.preSS|bIe. In ref
discussed in ref 18. 9, these entropic contributions were simply omitted.

For reversible isothermal changes, the reversible work is equal
8. Summary and Conclusions to the change in free energy. The process considered here is also
isothermal (since the temperature of the two boxes is fixed).
However, in exchanging matter between the two boxes, this
matter experiences a change in its temperature. The free energy
must be corrected for these temperature changes in order to obtain
the reversible work. Since the chandfein free energy is equal
to OF = ow™ — SOT, we have to add the contributi@T to
the calculatedF in order to obtain the reversible workn™®V.

Acknowledgment. This work has benefited from several
discussions with Wim Briels, Eric Bringuier, Werner Ker,
and Marianne Hartung, part of which resulted in the material of
section 3 and the Appendix.

On the basis of force balance on the Brownian time scale in
combination with thermodynamic considerations concerning the
force on a colloidal sphere resulting from gradients in concentra-
tion and temperature, it follows from the present analysis and
what has been said in ref 9 that the collective diffusion coefficient
D and the thermal diffusion coefficie®r are given by

(o, T, 1o Th_ere is a single-particle cor_ltribution to the reversible work_
D =Dy that is related to the change in temperature of matter that is
dp exchanged. For example, the reversible work involved in building

up an electrical double layer is temperature-dependent. In

oll(p, T, u(T, 9) RAAM -
D; = D8 s s + B'F (49) changing the temperature of a double layer, part of the exchanged

heat in order to change the temperature is therefore converted
into work. This latter contribution to the reversible work is a
single-particle contribution which will be denoted in this Appendix
asow,’ (where the subscript “c” stands for “colloid”). The total
reversible work is thus written as

whereIl is the osmotic pressure (which is a function of the
colloid number density, the temperatur&, and the chemical
potentialus of the solvent). In the temperature derivativeldf

in the expression fddr, the derivative also acts on the temperature
dependence of the chemical potential of the solvent (the variable ov v
srepresents the other variables on whighlepends besides the OW®' = OF + SOT + owj (50)
temperature). Furthermoi®yis the Einstein diffusion coefficient

andp = 1/kgT (wherekg is Boltzmann’s constant). The firstterm  The free energy and entropy are now understood to exclude the
on the right-hand side of the expression @y accounts for single-particle internal degrees of freedom, which relate to the
direct interactions between colloidal particles and includes the solvation layer, the electrical double layer, and the solid material
“ideal gas” contribution, while the second term is the single- of which the core of the colloids consists. Changes related to
particle contribution. Here\.™" is the reversible work that is  these internal degrees of freedom of the “complexed colloidal
needed to build up a colloidal particle. This includes the creation particles” are lumped into the single-particle contributior’
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Figure 3. The left two figures depict the process of moving all colloidal particle from box 1 to box 2. The middle two figures depict the
accompanied opposite displacement of pure solvent. The right two figures depict the resulting total process. Not depicted are the colloidal
particles which are also displaced simultaneously during thermodiffusion (for example, from box 2 to box 3).

to the total work. It is precisely this single-particle contribution 2 is accompanied by the movement of an equal volume of solvent
that is considered explicitly in the present paper. The corre- from box 2 to box 1. The process is sketched in the Figure 3.
sponding degrees of freedom related to the electrical double The entropic contribution is now unambiguously define8a3
layer are treated explicitly in the present paper by explicity — SoOT, whereS; is the entropy of the suspension afds the
accounting for the electrolyte species that build the double layer entropy of an equal volume of pure solvent (note that the
in thermodynamic relations. In this appendix, we shall disregard temperatures of boxes 1 and 2 dandT + 0T, respectively).
these “internal degrees of freedom” of colloidal spheres, which It is very difficult to specify the entropic contributions if one
are responsible for single-particle thermal diffusion, and simply considers the displacement of just a subcollection of particles
lump them all together intow.’ without further specification. ~ from box 1 to box 2.

The similar “entropic contributions” of the forr8T that are According to eq 50, we thus have (withthe volume of the
connected to the internal, single-particle degrees of freedom canboxes)

be treated similarly. Including these contributions would un-

necessary complicate notation: all species that are involved in OW*®' = 6F + V[s, — S]OT + ow,’ (51)
these internal degrees of freedom must be taken into account

explicitly in all equations. We shall therefore discuss only the wheressands are the entropy of the suspension and pure solvent
“interaction contributions” of the forn®T of the solvent and per unit volume.

of the colloids in this appendix. As mentioned above, contrary  The change in free energy~/0N; per colloidal particle is

to the free energy in eq 50, the change in free energy in eq 13calculated in ref 9

in the main body of the present paper includes the internal colloidal

particle degrees of freedom, which are lumped in eq 50 into the OF/ON; = ov (52)
contribution ow;". Here, we will show that the remaining

entropic contributionST in eq 50 cancels against similar Where

contributions arising from GibbDuhem relations and that the 0
change in free energdyF in eq 50 is connected to interaction v =y — Ve (53)
contributions (except for the “ideal gas contribution”). =He Uo”s

S

The “entropic contributionS) T can be obtained by considering
the exchange of matter between the two boxes in more detail. The 5 on v now refers to the difference between box 2 and box
What is actually happening during thermodiffusion is that all 1
particles drift coherently from one box to the other. Consider  The Gibbs-Duhem relation for the suspension reads
therefore the process where all particles from box 1 drift to box
2. During the same time span, all particles within the neighboring 0=S0T — Vop + Noue + Nou, (54)
box (box 0, for example) diffuse to box 1, and all particles from
box 2 are displaced to the neighboring box (box 3, say). Since whereS; is the entropy of the suspensiorithe volume, ang
the gradients in concentration and temperature are constant ovethe mechanical pressure. The GibiBuhem relation for the
the length scale set by the size of the boxes, effectivbly= osmotic reservoir (that was already introduced in section 4, see
Nc2 — Nc 1 particles are moved from box O to box 1, from box eq 22) reads
1 to box 2, and from box 2 to box 3. In the main text and in ref
9, the change in free energy is calculated for a displacement of 0=80T — V,0p, + N; dus (55)
thesedN; particles from box 1 to box 2. This is sufficient to
obtain an expression for the force acting on a particle, once thewhere the index “r" refers to the reservoir. It follows from these
entropic contributions are omitted. To include the entropic two relations and the definition of in eq 53 that
contributionsST, however, we have to consider the whole
cascade of coherent displacements of colloidal particles, where ov = X[Sr —s]oT+ v O (56)
it suffices to ask for the change in free energy that is required N, N
to move all particles from box 1 to box 2. The similar contributions
to the change in free energy from the entire cascade of Wheres is the entropy of the pure solvent in the reservoir per
displacements can simply be added to obtain the change of freeunit volume and1 = p — pr is the osmotic pressure. In deriving
energy of the whole system. this equation, it is considered that the suspension is space-filling

When thermal expansion of colloidal material and solvent is (that is,Ncvg + Nsv9 = V) and the fluid in the reservoir is space-
neglected, the movement of colloidal spheres from box 1 to box filling (that is NS,WS =V,).
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Combining eqgs 51, 52, and 56 thus leads to the following e, 08P, T)
expression for the reversible wodk\e" per colloidal particle ~ S(Pv T) = S(P, T) = J;) dp o

a8(pg(P', T), T) dpg(p', T)
9ps p’
For nearly incompressible solventas(p’, T)/dp' is very small,

sothat the difference in entropy density can be neglected, provided
that IT x a typical value ofds(ps, T)/dps is not inversely

wheredW." is the single-particle reversible work for a single proportional todp(p’, T)/op'. Since dS(ps, T)/dps = SV =
colloidal sphere. The entropy densities of pure liquid in the (VIN)SIN, V, T)/3V, and both terms on the right-hand side are

. iside the solvat ddoublel fthe colloid perfectly well-defined also for incompressible solvents, there is
suspension (outside 1€ solvation and double layers of the collol S)no reason fobs(ps, T)/dpsto diverge forincompressible solvents.
and of pure solvent in the osmotic reservoir differ from each

) i g This shows that the entropy contributions to the reversible
other due to the pressure differeriden the suspension and the  \york on the right-hand side of eq 13 cancel against those arising
osmotic reservoir. Now, according to the GibliBuhem relation from the Gibbs-Duhem relations for the suspension and the
for the pure solvent, there are only two independent intrinsic osmotic reservoir, provided that thermal expansion is neglected
variables. The entropy per unitvolume, being anintrinsic variable, and the solvent is incompressible.

is therefore a function of two intrinsic variables only. Bstand With the neglect of the entropy contribution forincompressible
5 can thus be regarded as functions of either the intrinsic variablessolvents and without the single-particle contribution, we thus
T, por T, ps (with ps = Ng/V the number concentration of pure ~ "€COVer from eq 57_the resuiinvev = (VING)OIT of ref 9_ for the
solvent). For the same reason, the number density is a functioninteraction contribution to the reversible work per colloidal sphere.

of T andp. Hence LA062184M

T dp (58)

SWeE = Ni[s,r —§]oT+ Ni OTT + oW (57)



