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The thermal expansion of a fluid combined with a temperature-dependent viscosity introduces
nonlinearities in the Navier-Stokes equations unrelated to the convective momentum current. The
couplings generate the possibility for net fluid flow at the microscale controlled by external heating.
This novel thermomechanical effect is investigated for a thin fluid chamber by a numerical solution of the
Navier-Stokes equations and analytically by a perturbation expansion. A demonstration experiment
confirms the basic mechanism and quantitatively validates our theoretical analysis.
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Spatial confinement of a liquid changes its flow behavior
markedly since the importance of surface forces relative to
the volume forces increases as the confinement becomes
smaller. Recently, flow at the scale of millimeters and
below has attracted significant attention, stimulated by
the rapid advances to manipulate and to control small-scale
devices [1–4]. Since microfluidic flow often is essentially
at zero Reynolds number, viscous drag overwhelms the
inertial effects of the fluid giving rise to peculiar flow
behavior [5,6]. In particular, heat conduction becomes
quite efficient, since the thermal diffusivity � � k=�cp,
with k the thermal conductivity and �cp the volumetric
heat capacity, implies thermal relaxation times D2=�2� of
the order of 0.1 ms for water confined by walls separated by
D � 10 �m. Usually, this strong thermal coupling gives
rise to a uniform temperature and all physical processes are
isothermal. Since pressure effects upon density are negli-
gible if the velocities are small with respect to the speed of
sound, fluid flow is essentially ‘‘dynamically incompress-
ible’’ [7]; i.e., the velocity field is solenoidal, div ~v � 0.

Recently, it has been noted by Yariv et al. [8] that for the
case of unsteady heating, this is no longer the case, and one
can in principle generate a nonsolenoidal flow. A transient
fluid flow emerges due to a thermal expansion of the fluid
as a reaction to the heating in combination with the thermal
diffusion.

In this Letter, we propose a novel mechanism to generate
net flow in a thin fluid chamber, i.e., a viscous liquid
confined between two plates separated by a distance of
the order of a few micrometers. The driving of the fluid
flow is provided by imposing a traveling temperature wave.
We show analytically within a thin-film approximation that
such unsteady heating leads to net fluid flow. Then, we
corroborate our analytic approach by a finite-element cal-
culation. Last, we provide first experimental evidence that
there is indeed net flow and that the fundamental depen-
dences have been correctly identified.

The basic mechanism may be summarized as follows:
Because of thermal expansion of the liquid, the motion of
the heating results in a pressure modulation. The pressure
gradients induce a potential flow which, however, does not
lead to net fluid flow. Yet, the temperature dependence of
the shear viscosity gives rise to a small net mass transport
typically opposite to the motion of the heat source. The
flow velocity is then proportional to the thermal expansion
coefficient of the fluid, � � ��1

0 �@�=@T�, as well as to the
thermal viscosity coefficient � � ���1

0 �@�=@T�.
The geometry under consideration consists of a thin

chamber of height D and a much larger lateral extension.
There is a natural small parameter � � D=L� 1, where L
is a typical length scale in the lateral direction. Since the
film is thin, one expects the Navier-Stokes equations to be
dominated only by a few terms. To identify the relevant
contributions, dimensionless quantities are introduced as
t � Tt�, vi � Uv�i , vi � vv�?, xi � Lx�i , x? � Dx�?, p �
Pp�. Lateral directions are labeled by the index i 2 fx; yg,
whereas the vertical direction is indicated by the subscript
? . To keep all terms in the mass conservation law, the
scales are chosen as v � �U, T � L=U, and consequently
the fluid flow is essentially in-plane. To balance the leading
order term in the momentum conservation law, the pressure
scale has to be chosen as P � �0U=��

2L�. Momentum
transport via convective processes may be ignored from
the very beginning since the Reynolds number is small,
Re � �0UL=�0 � 1 [9]. Then, the mass conservation law
and the momentum balance in perpendicular and lateral
direction read to leading order in a thin-film approximation,
see, e.g., [10–12] (restoring units)
 

@t��r?��v?� � ri��vi� � 0; (1a)

r?p � 0; (1b)

r?��r?vi	 � rip � 0: (1c)

As a consequence of the thin-film geometry, (i) bulk vis-

PRL 100, 164501 (2008) P H Y S I C A L R E V I E W L E T T E R S week ending
25 APRIL 2008

0031-9007=08=100(16)=164501(4) 164501-1 © 2008 The American Physical Society

http://dx.doi.org/10.1103/PhysRevLett.100.164501


cous processes do not contribute to the leading order
equations, (ii) the pressure is homogeneous in the perpen-
dicular direction, (iii) lateral pressure gradients drive the
lateral fluid flow. Note that the divergence of the velocity
field is irrelevant for the momentum balance but plays a
crucial role in the mass conservation law.

The coupling to the temperature enters the equations via
the expansion of the fluid as well as by the temperature
dependence of the shear viscosity. For the problem at hand,
it is appropriate to neglect the mechanical compressibility
of the fluid and to expand the equation of state to first order
in the temperature field, � � �0�1� �	T�, where 	T is
the local temperature change and � � ��@ ln�=@T�p the
thermal expansion coefficient at the reference state (�0,
T0). The density field then is eliminated from the equations
of motion in favor of the temperature field 	T. A second
ingredient for the theoretical model is to include the varia-
tion of the shear viscosity with temperature. Introducing
the thermal viscosity coefficient � � ��@ ln�=@T�p, the
coupling reads � � �0�1� �	T� to first order.

In the case of considerable thermal coupling to the walls,
the temperature field approximately reflects the profile of
the heat source. The in-plane variations of the temperature
field occur on scales 
, b
 D, where 
 denotes the
wavelength and b the typical lateral extension of the heat-
ing. Consequently, the spatial dependence of the density
and the shear viscosity is only in-plane as it is inherited
from the temperature profile. With this additional assump-
tion, the in-plane momentum balance equation, Eq. (1c), is
readily integrated for no-slip boundary conditions at the
walls

 vi � �
1

2�
z�D� z�rip; (2)

i.e., the velocity profile corresponds to Poiseuille flow.
Since the spatial dependence of the velocity profiles

perpendicular to the wall is known, one may project the
three-dimensional problem to the two-dimensional plane
by averaging over the vertical z-direction,

 �v i �
1

D

Z D

0
vidz � �

D2

12�
rip: (3)

Because the density is assumed to vary only in the lateral
direction, the mass conservation law, Eq. (1a), can be
directly averaged over the perpendicular direction, @t��
ri�� �vi� � 0, without introducing new terms. The pumping
process becomes stationary in the frame of reference co-
moving with the heat wave, i.e., substituting �vx � �vx � u,
where u denotes the velocity of the heat wave. Then, in the
comoving frame, the averaged mass conservation law
yields

 � urx�� �ri �vi � � �viri�: (4)

Here, the velocities �vi are small quantities, typically �vi �
u. From the closed set of equations, Eqs. (3) and (4), the

fluid velocity can be calculated. The temperature profile
in the comoving frame enters Eq. (4) in the form of
density gradients, ri� � ���0ri	T and Eq. (3) via the
temperature-dependent viscosity. The net flow emerges
only if the thermal viscosity coefficient � is nonvanishing.
For a temperature-independent viscosity, the pressure acts
as a velocity potential, Eq. (3), and averaging along the
direction of the wave propagation yields a vanishing net
flow.

We exemplify the flow profiles for the case of a Gaussian
temperature wave 	T� ~r� � 	T0 cos�kx�e�y

2=2b2
, obtained

by a numerical solution of Eqs. (3) and (4) using the
FEMLAB®3.1 software package by Comsol. We have used
a wavelength 
 � 2�=k � 50 �m, a lateral width b �
7 �m of the Gaussian modulation, a temperature ampli-
tude of 	T0 � 3:8 K, and a thermal wave velocity u �
100 mm=s. The parameters for � � 3:0� 10�4 K�1, � �
0:022 K�1 correspond to water at ambient temperature.
The parameters have been chosen such that the tempera-
ture modulation appears approximately as a train of circu-
lar heated areas mimicking the demonstration experiment
below. The regions where the temperature gradient is
maximal (minimal) act as sources (sinks) for the velocity
field, giving rise to a locally dipolar pattern of the fluid
flow, see Fig. 1(a). Careful inspection reveals that the
velocities in the heated regions are bigger than in the colder
ones. The pressure profile is shifted by a quarter of a
wavelength reflecting the local expansion of the fluid,
Fig. 1(b). The solenoidal part of the velocity field has
been obtained as the difference of two FEMLAB calculations
for thermal viscosity coefficients � � 0 and � � 0. Close
to the center of the wave, this contribution is directed

FIG. 1 (color online). Finite-element solution for a tempera-
ture wave in the comoving frame. (a) The temperature profile is
indicated by the color scale and the arrows refer to the induced
velocity flow. (b) The corresponding pressure modulation (color
scale) and the solenoidal component of the flow.
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opposite to the thermal wave velocity with an average
pump velocity vFEM

fl � 2:88 �m=s at the center of the
thermal wave, whereas far away from the heating, there
is a characteristic backflow. The pressures induced by the
pumping are below 10�6 bar [Fig. 1(b)]. The pressure
limitations of the glass chamber used are estimated to
10 bar by a finite element calculation. However, the pres-
sure induced by the pumping increases with the viscosity
of the fluid and eventually will stall the pump motion since
thermal expansion will deform only the chamber walls
instead of triggering fluid motion. So we expect to equally
pump fluids with viscosities 107 fold higher than water.

To gain further insight, we develop a perturbative ana-
lytical solution for the fluid flow appropriate for small
temperature changes. Formally, the expansion is performed
in the small parameters � and�, and we shall show that net
fluid flow first occurs at O����. The quiescent fluid vi �
0, p � p0 solves the governing equations to zeroth order in
�, �, i.e., if all couplings to the temperature field are
ignored. To leading order in �, the term on the r.h.s. of
Eq. (4) is of second order and may be ignored. Similarly,
(3) is expanded to first order in the temperature change

 �v i � �
D2

12�0
�rip��1� �	T�: (5)

Already at this point, one concludes that to order O��0�,
the velocity corresponds to potential flow only; hence, no
net pumping arises to that order. The leading order to the
pump velocity is then expected to be of order O����. To
identify the net fluid motion, it is favorable to introduce the
velocity potential, �, and the stream function,  , via �vx �
rx��ry , �vy � ry��rx . From Eq. (5), one infers
that the leading term corresponds to pure gradient flow, i.e.,
� � ��D2=12�0�p, where ��~r� denotes the velocity po-
tential and ~r � �x; y�. To the required order, � is deter-
mined by combining Eqs. (4)

 r2��~r� � ��urx	T�~r� �O��2�: (6)

Once the velocity potential is determined, the stream func-
tion is calculated by extracting from �	T� ~r�ri��~r� its
solenoidal component. By Helmholtz’s decomposition
theorem, the stream function satisfies a Poisson equation

 �r2 � rx��	Try�� � ry��	Trx��: (7)

The lowest order contribution to the stream function is thus
proportional to ��, which also sets the overall scale of the
thermomechanical effect. Furthermore, one infers from
Eq. (7) that a strictly one-dimensional temperature modu-
lation does not give rise to solenoidal flow. The remaining
task is to solve the set of Poisson equations, which can be
easily implemented by numerical methods. To determine
the average flow for a travelling periodic temperature wave
train of wavelength 
, it is actually sufficient to know the
velocity potential,

 vfl�y� �
1




Z 


0
dx �vx� ~r� � �

1




Z 


0
dx��~r��rx	T� ~r�;

(8)

where the last relation follows from the representation,
Eq. (5) and an integration by parts.

To illustrate the physics, we consider a Gaussian tem-
perature wave 	T� ~r� � 	T0 cos�kx�e�y

2=2b2
, where b char-

acterizes the lateral width of the wave train. The Poisson
equation, Eq. (6), can be solved exactly in terms of the
error functions [13]; however, it is instructive to construct
an approximate solution for wide waves, kb
 1. Then the
problem is effectively one-dimensional, and � depends on
the lateral coordinate y only parametrically. One readily
calculates � � �u�	T0 sin�kx�e�y

2=2b2
=k, implying a net

fluid motion

 vfl�y� � �u���	T0�
2 exp��y2=b2�=2; (9)

typically opposite to the motion of the traveling tempera-
ture wave. Since by assumption the changes in the density
and the viscosity are small, the net fluid motion is much
slower than the velocity of the temperature wave, vfl � u.

We have confirmed the predicted fluid movement in a
demonstration experiment. A circular variant of a thermal
wave is imposed with infrared light to a thin fluid film, see
Fig. 2. The fluid movement is recorded using micrometer-
sized fluorescent particles, and the thermal wave is imaged
stroboscopically with temperature-sensitive fluorescence.
Within experimental errors, the theory captures the ther-
mally triggered net flow.

The details of the experiment are as follows: A fiber
laser at 1455 nm and a maximal power of 5 W (RLD-5-
1455, IPGLaser) is deflected by an acousto-optical deflec-
tor (Pegasus Optik, AA.DTS.XY.100) and moderately fo-
cused from below (Thorlabs, C240TM-C, f � 8 mm,
NA � 0:5) to a 10 �m thin fluid film sandwiched between
sapphire windows. The light is absorbed by water with an
attenuation length of 305 �m. The chamber is imaged
from above by a fluorescence microscope (Zeiss,
Axiotech Vario) and a CCD camera (SensiCam QE,

FIG. 2 (color online). Demonstration experiment. (a) A circu-
lar thermal wave is created in water by a moving focus of an
infrared laser. The temperature is inferred by stroboscopic imag-
ing of a temperature-sensitive fluorescent dye. (b) Peak tempera-
ture along the circumference. A sinusoidal fit yields a
temperature amplitude of 	T0 � 3:8
 0:5 K.
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PCO). The illumination is provided by a green LED
(LXHL-LX5C, Luxeon) which for the temperature imag-
ing was modulated with a bandwidth of 150 kHz using a
laser current source (LD-3565, ILX Lightwave). The tem-
perature field was imaged using 50 �M of the fluorescent
dye BCECF under stroboscopic illumination [14,15] to
determine the temperature amplitude of the thermal wave.

The thermal wave is generated by a scanning laser spot.
Six individual temperature peaks are created by a circular
pattern of radius R � 50 �m with a base frequency of
30 kHz. The frequency is faster than the thermal relaxation
time, which is dominated by the vertical heat currents and
determined to 0.21 ms using a finite-element calculation. A
thermal wave of six points is generated, measured in Fig. 2.
The points are rotated using a slower shift frequency fS �
0:2 . . . 2 kHz. The result is a circular thermal wave with
velocity u � fS � 2�R=6 � 10 . . . 100 mm=s.

Fluid velocities are measured by single particle tracking
of 80 pM of 1 �m diameter silica beads (PSi-G1.0,
Kisker). Particle velocities could be well discriminated
from Brownian diffusion by tracking 5 independent parti-
cles over 10 �m with a positional error of 1 �m. The peak
velocity of the parabolic flow profile was measured by
selecting the beads in the chamber center. The experimen-
tal values were multiplied by 2=3 to compare with the
chamber-averaged theoretical values. Optical trapping or
thermophoresis would move the tracer particles with the
thermal wave, opposite to the observed flow direction.
Under the experimental conditions, both effects would
yield similar attractive forces. However, control experi-
ments in heavy water with its 100-fold decreased absorp-
tive heating only revealed moderate attraction into the
illuminated ring, but no pumping movement along it
(< 0:13 �m=s). This indicates that the particles are ideal
tracers of the fluid motion at the used focus size [15].

With the above described temperature pattern and a
thermal wave velocity of u � 100 mm=s, we measure a
peak fluid flow of vexp

fl � 2:7
 0:5 �m=s. We expect from
the wide wave solution, Eq. (9), a fluid velocity of vtheo

fl �
4:77 �m=s. Applying the complete analytical solution
[13] or the FEMLAB result yields vFEM

fl � 2:88 �m=s which
describes the experimental result quantitatively.

Two parameter variations further confirm the theoretical
model (Fig. 3). The dependence on the temperature ampli-
tude 	T0 exhibits a parabolic dependence [Fig. 3(a)] as
expected theoretically by Eq. (9). Furthermore, the fluid
velocity scales linearly with the velocity u [Fig. 3(b)] of the
thermal wave as predicted (solid lines). We therefore find
experimentally that a circular thermal wave triggers a fluid
flow according to the theoretical description.

To conclude, we showed that a thermal wave can move a
fluid by the nonlinear combination of the temperature-
dependent density and viscosity. While the obtainable fluid

velocities are small at present, future improvements could
allow microfluidic applications.
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FIG. 3. Experiment versus theory. (a) The fluid velocity scales
quadratically with the amplitude of the thermal wave 	T0.
(b) The speed increases linearly with the velocity u of the
thermal wave. Measurements are given as dots, the theory as
solid lines with the geometrical prefactor determined in
Ref. [13]. Error bars are standard errors.
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